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Objective

Breaking the Limits of Message Passing Graph Neural Networks
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Abstract

Since the Message Passing (Graph) Neural Net-
works (MPNNSs) have a linear complexity with
respect to the number of nodes when applied
to sparse graphs, they have been widely imple-
mented and still raise a lot of interest even though
their theoretical expressive power is limited to
the ﬁrst order Weisfeiler- Lehman test (1 -WL). In

supports are des1gned in spectral domam by anon-
linear custom function of eigenvalues and masked
with an arbitrary large receptive field, the MPNN
is theoretically more powerful than the 1-WL test
and experimentally as powerful as a 3-WL exist-
ing models, while remaining spatially localized.
Moreover, by designing custom filter functions,
outputs can have various frequency components
that allow the convolution process to learn differ-
ent relationships between a given input graph sig-
nal and its associated properties. So far, the best
3-WL equivalent graph neural networks have a
computational complexity in O(n®) with memory
usage in O(n?), consider non-local update mech-
anism and do not provide the spectral richness of
output profile. The proposed method overcomes
all these aforementioned problems and reaches
state-of-the-art results in many downstream tasks.

1. Introduction

In the past few years, finding the best inductive bias for
relational data represented as graphs has gained a lot of
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able weights. These weights can be shared with respect
to the distance between nodes (Chebnet GNN) (Defferrard
et al., 2016), to the connected nodes features (GAT for graph
attention network) (Velickovic et al., 2018) and/or to edge
features (Bresson & Laurent, 2018). When considering
aphs, the memory and computational complexity

large sparse graphs and thus have been apphed w1th success
on many downstream tasks (Dwivedi et al., 2020).

Despite these successes and these interesting computational
properties, it has been shown that MPNNs are not pow-
erful enough (Xu et al., 2019). Considering two non-
isomorphic graphs that are not distinguishable by the first
order Weisfeiler-Lehman test (known as the 1-WL test), ex-
isting maximum powerful MPNNs embed them to the same
point. Thus, from a theoretical expressive power point of
view, these algorithms are not more powerful than the 1-WL
test. Beyond the graph isomorphism issue, it has also been
shown that many other combinatorial problems on graph
cannot be solved by MPNNs (Sato et al., 2019).

In (Maron et al., 2019b; Keriven & Peyré, 2019), it has been
proven that in order to reach universal approximation, higher
order relations are required. In this context, some powerful
models that are equivalent to the 3-WL test were proposed.
For instance, (Maron et al., 2019a) proposed the model
PPGN (Provably Powerful Graph Network) that mimics the
second order Folklore WL test (2-FWL), which is equivalent
to the 3-WL test. In (Morris et al., 2019), they proposed to
use message passing between 1, 2 and 3 order node tuples
hierarchically, thus reaching the 3-WL expressive power.
However, using such relations makes both memory usage

“Since the Message Passing (Graph) Neural Networks (MPNNs) have ...
...even though their theoretical expressive power is limited to the first order
Weisfeiler-Lehman test (1-WL).”



Objectives (Detailed)

—

. Understanding graphs as a datatype

Understanding the general architecture of graph neural networks
Understanding of what makes two graphs the ‘same’

Understanding of the Weisfeiler-Lehman isomorphism test

Understanding the connection between the WL test and message-passing
In-depth understanding of (Xu et al., ICLR 2019) and (Morris et al., AAAI 2019)

Very introductory stuff {
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*Today’s topic is more relevant on chemical datasets, where the model needs to extract
as much information as possible from the given graph structure.

**1 will try to refrain from mathematical jargon as much as possible, and only use them in
order to summarize the conceptual content.



Buildup
Understanding graphs
Understanding the general architecture of graph neural networks



Graphs as an abstract datatype °

Graphs are an abstract type of data where nodes (entities) are connected by edges (connections)

(Optional) (Optional)
Node features / attributes Node features / attributes
Node N ER 'H NN

NN
(Optional)
Edge features / attributes

(Optional)
dge features / attributes

Undirected graph Directed graph

...But honestly, looking at this does not result in a practical understanding of graphs.

Therefore, we will look at various benchmark datasets in the field of graph machine learning.



In academia; Benchmark datasets in the literature

Social Citation / Web Molecules Biology / Simulation / etc.
A 2)
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Observed dynamics Interaction graph
’ J
: 3) 4)
Node: People / Account Node: Paper Node: Atom ?
Edge: Connection Edge: Citation Edge: Bond =3
Node feature: Metadata Node feature: Abstract Node feature: Atom type

Edge feature: Bond type

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff Example benchmark datasets
*  *Planetoid dataset

* Reddit (Cora/Citeseer/Pubmed) * QM9 1) **PPI (protein-protein interaction)

* Ego-Facebook « Coauthor * Zinc 2) Physical simulation (Kipf et al., 2018)

«  Github * WebKB « MUTAG 3) 3D point cloud (Wang et al., 2019)
(Texas/Comell/etc.) 4) Road network (Derrow-Pinion et al., 2021)

Yang et al., Revisiting Semi-Supervised Learning with Graph Embeddings, ICML 2016

Kipf et al., Neural Relational Inference for Interacting Systems, ICML 2018

Wang et al., Dynamic Graph CNN for Learning on Point Clouds, ACM Transactions on Graphics 2019

Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, CIKM 2021

**Image source: https://www.researchgate.net/publication/324457787_iTRAQ_Quantitative_Proteomic_Analysis_of_Vitreous_from_Patients_with_Retinal_Detachment/figures?lo=1


https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.GitHub.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.GitHub.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WebKB.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WebKB.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.ZINC.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.ZINC.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html

An illustration of a generic GNN layer’s operation

This is how a typical single layer of GNN operates when it calculates node representations/embedding vectors.
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Therefore, the GNN can encode node feature vectors (if exists) + edge feature vectors (if exists)
+ graph structure (directly determines which vectors to aggregate).



Abstraction: A general message-passing layer of GNNs

1. Message passing phase (Aggregation) 2. Update phase (Transformation)
t+1 t t t+1 t t+1
Y - My(hh, B, ew) hitt = U, (hE, mEth)
weN (v)

Note that this is simply a rewriting of the same concept from the previous slide.

*Usually, we cite these papers for the term “message-passing”
[First formal introduction of the concept] Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017
[Comprehensive discussion & abstraction] Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv 2021



Abstraction: A general message-passing layer of GNNs

GNN layer (Message-passing neural networks)

SP

hu = ¢ Xus 69 ¢(Xu, X,U) This operation must be permutation

invariant to ensure the same result for
vEN,, arbitrary node orderings!
4 Summation / Average / (Max) pooling etc.

So if we re-describe GCN (Graph convolutional network) for node 4, it would be...

N = {135} U4} dxux1) = 7= 6= MLP

*Usually, we cite these papers for the term “message-passing”
[First formal introduction of the concept] Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017
[Comprehensive discussion & abstraction] Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv 2021



On representational power in GNNs
What makes two graphs the ‘same’™?

10



What do we mean by representational power?

Basically, GNNs have ‘good representational power’ if
they can tell two different graphs apart & perceive same graphs identically.

So how do we define if two graphs are different?

Vs.

G1 G2
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Basically, GNNs have ‘good representational power’ if
they can tell two different graphs apart & perceive same graphs identically.
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What do we mean by representational power?

Basically, GNNs have ‘good representational power’ if
they can tell two different graphs apart & perceive same graphs identically.

So how do we define if two graphs are different?

Vs.

O



Isomorphism (a fancy word for identical graphs)

Whatever the definition of ‘isomorphism’ is,
it must not care aboud node ordenngs

‘e =
()3 a‘e
(1 (o

We say that two graphs G and H are isomorphic if there exists
an edge preserving bijection ¢ : V(G) — V(H), i.e., (u,v)
is in E(QG) if and only if (¢(u), p(v)) is in E(H).

This means, G1 and G2 are isomorphic since we can find a bijection mapping of:

38
1¢>9
4<¢>6
25

and according to this node mapping, the edge set from G1 exactly translates to G2
and therefore G1 is the ‘same’ graph as G2.

[1] (Definition) Morris et al., Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, AAAI 2019



The practical problem of graph isomorphism test

Vs.

()
./

Gy G

The problem of graph isomorphism testing is suspected to be "NP-hard [2] [3]

* Probably no exact (deterministic) polynomial-time algorithmic solutions
* WL isomorphism test: A heuristic algorithm to test isomorphism

[2] Huang & Villar, “A short tutorial on the Weisfeiler-Lehman test and its variants”, ICASSP 2021
[3] David Bieber, “The Weisfeiler-Lehman Isomorphism Test” (Blog post)



Method for testing between two graphs
Understanding the WL-isomorphism test

16



One iteration of the WL-isomorphism test' [1], [2]

Q. Is there a systematic (heuristic) method that can “mostly” identify isomorphic graphs?

*Specifically, we are showing the simplest version of the WL test, which is also known as the color refinement algorithm (for reasons which will be apparent momentarily)

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2]

ﬁ N Graphs with node features: Also appropriately

Violor nodes fappropriately

ReB3

*As suggested by [4], color node according to the node degree. Or just start with a uniform coloring

5 F BB
i B BB

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2]

» | { © i
ot 2~

VAcquire multiset of colors

T 1427 Theen
| Graph2

*Multiset is a set that allows multiple duplicates of elements

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2]

ﬁ m {{OOO}}ﬁ{{OO}}
» {e} {eo}}
| Graph1

g:i i:i {{OO}}K@{{OO}}
» {e@} {e@}
| Graph2

*Multiset is a set that allows multiple duplicates of elements

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2]

ﬁ ﬁ {O{{OOO}}}ﬁ{{{OO}}O}
” 1@ 10} {{ee}} o}
__ Graph1

g:i i:i {O{{OO}}}K@{{{OO}}O}
» {oe{{eo}} {{eoe}o}
| Graph2

*Multiset is a set that allows multiple duplicates of elements

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2]

‘ :‘ ‘ :‘ {O{{OOO}}}N{{{OO}}O} {O{{OO}}}g:i{{{OO}}O}

oo {ee}o; {0{eolh {eoeh o}

VMap each set to a new color by a "bijective function

@< hash({ © {Q © O }}})
i:i » i:i ® —hasu({ © (O )
_ Graph2

@<« hashf O {{Q O }}})

* At least injective. The function has multiple names, such as hashing functions, relabeling functions, etc.

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



One iteration of the WL-isomorphism test [1], [2]

RPN EPR

Graph 1

VGet the colors of the next iteration

@< hash({ © {Q © O }}})
i:i i:i I:I @ nasn{ © {{ @ I

Graph 2 . <— hash ({ O {{ O O }}})

[4] Shervashidze et al., “Weisfeiler-Lehnman Graph Kernels”, J. Mach. Learn. Res. (2011)
[5] Morris et al,. “Weisfeiler and Leman go Machine Learning: The Story so far”, arXiv (2021)



WL-isomorphism test: Three example cases




WL-isomorphism test: Three example cases

Counclusion of case 1

)

Different color distribution = Fail isomorphism test

| gj



WL-isomorphism test: Three example cases

Counclusion of case 2

j=co

\ 4

j=co

Conclusion: Two graphs are isomorphic ..?

* We do not actually need to run the iteration to the end of time: If color distributions remain unchanged for two consecutive iterations,
you already reached stable coloring (hint: Use induction). Also, Cis bounded by max(|Graph 1l, IGraph 2I) (see [5]).



WL-isomorphism test: Three example cases

Counclusion of case 3

|
|
|
:
|

1 .
stable coloring Still the same color distribution

A (1

Conclusion: Two gra are isomorphic annot determine



Understanding the connection between the WL test and message-passing
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Relation between WL and GNNs

“Color refinement” in WL Message passing in GNNs

08 L

@« hash({ @ {0 © O I

@ < hash{ O { O }}})
@« nash({ @ {{@ @ ) h, = ¢ (xu, D v(xu, %) >
veEN,

Can you see the similarity?



Relation between WL and GNNs

From a feed forward computational standpoint, GNNs are a neural network version of the WL test.

Color refinement in WL

@<« hashOQ{O O}

Collect neighbor information

Message passing in GNNs

h, = ¢ | x,, () ¢(XU,XU)\|

VENL




Relation between WL and GNNs

From a feed forward computational standpoint, GNNs are a neural network version of the WL test.

Color refinement in WL

@—nhash(Q {0

Map self & neighbor information
to next iteration

Message passing in GNNs

hy = ¢ | xu, @ (%)
vEN,




Consequences of GNN’s ability to differentiate graphs

Color refinement in WL Message passing in GNNs
@ < hash({ © {© O }}})
hy = ¢ xu, D ¥(xu, %)
« hash: Fixed bijective function (at least injective) vEN
u

. Qb, 1//)*A neural network (Learnalbe weights)
* (Probably) Notbijective norinjective

GNNs are at best1-WL

e o e o ° o e o

<X s = X

e 70 e——>0 o) 70 o) o

o 5O o——>0 o/o o&o

o— | o o o) e o
Gengral Injective Surjective Bijective
Fundtion (not surjective) (not injective) (injective, surjective)

Loss of expressive power: Cannot distinguish some elements



Consequences of GNN’s ability to differentiate graphs

WL-isomorphism test: Three example cases

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

MESSAGE PASSING ALL THE WAY UP

Petar Velickovi¢
DeepMind / University of Cambridge
petarv@deepmind.com

ABSTRACT

The message passing framework is the foundation of the immense success enjoyed
by graph neural networks (GNN) in recent years. In spite of its elegance, there
exist many problems it provably cannot solve over given input graphs. This has
led to a surge of research on going “beyond message passing”, building GNNs
which do not suffer from those limitations—a term which has become ubiquitous
in regular discourse. However, have those methods truly moved beyond message
passing? In this position paper, I argue about the dangers of using this term—
especially when teaching graph representation learning to newcomers. I show that
any function of interest we want to compute over graphs can, in all likelihood,
be expressed using pairwise message passing — just over a potentially modified
graph, and argue how most practical implementations subtly do this kind of trick
anyway. Hoping to initiate a productive di ion, I propose replacing “beyond
message passing” with a more tame term, “augmented message passing”.

1 INTRODUCTION

In the span of only five years, graph neural networks (GNNs) have ascended from a niche of repre-
sentation learning to one of its most coveted methods—enabling industrial and scientific applications
that were not possible before. The growing list of applications includes recommender systems (Ying
et al., 2018; Hao et al., 2020), traffic prediction (Derrow-Pinion et al., 2021), chip design (Mirho-
seini et al., 2021), virtual drug screening (Stokes et al., 2020) and advances in pure mathematics
(Davies et al., 2021), especially repre ion theory (Blundell et al., 2021).

Most of these successes were propped up by the message passing framework (Gilmer et al., 2017),
where pairs of nodes exchange vector-based messages with one another in order to update their

i However, ol 1 limitations of this framework have been identified (Xu et al.,
2018; Morris et al., 2019)—and it is unable to detect even the simplest of substructures in graphs.

Counclusion of case 3

»A‘q---- »A‘q

=1 =00

L e

T 2 %g

E...

=

\
1
1
1
1
1
1
1
1
1
1
1
1

=0

Stable coloring

Still the same color distribution
=0

-»I::}-»... -»‘
=1

Conclusion: Two gxare isomorphic énot determine

————————

For example, message passing neural networks provably cannot distinguish a 6-cycle o from

two triangles rd (Murphy et al., 2019; Sato et al., 2021), and they are vulnerable to effects like

For example, message passing neural networks provably cannot distinguish a 6-cycle ‘ot from

two triangles V. 4 ‘ (Murphy et al., 2019; Sato et al., 2021), and they are vulnerable to effects like
led to a surge in method’s that aim to make structural recognition ez;sier fo; GNNs, which has been
undoubtedly one of the most active areas of graph representation learning in the recent few years.
See Maron et al. (2018); Murphy et al. (2019); Chen et al. (2019); Vignac et al. (2020); Morris et al.
(2019); Chen et al. (2020); Li et al. (2020); de Haan et al. (2020) for just a handful of examples.

And therefore GNNSs also inherit the same limitations from WL.




In-depth understanding of (Xu et al., ICLR 2019) and (Morris et al., AAAI 2019)
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GNNs cannot exceed WL in terms of its expressivity

Theorem [Morris et al., 2019, Xu et al., 2019] (informal)

If the 1-WL test cannot distinguish two graphs, then any GNNs also cannot distinguish them.

If GNNs can distinguish two graphs, the 1-WL test can also distinguish them.

In other words, the expressive power of GNNs is capped by 1-WL.

Color refinement in 1-WL

@« hash({ @ {@ @} = by, =

Message passing in GNNs

¢ | xu, P B(xu, %)

VENL




GNNs cannot exceed WL in terms of its expressivity

Proof of existence How to go beyond?

Theorem (informal) Problem: GNNs are bound by 1-dim WL-test
There exists weight parameters of GNN such
that, expressivity of GNNs exactly match 1-WL Solution: Make GNNs based on Adim WL-test
test. (k>1)

Theorem 2. Let (G, 1) be a labeled graph. Then for all ¢ > 0
there exists a sequence of weights W), and a 1-GNN archi-

tecture such that (?\_ O
cl(t) = 7t ; 4
Hence, in the light of the above results, 1-GNNs may viewed o]

as an extension of the 1-WL which in principle have the same 5. Q.
power but are more flexible in their ability to adapt to the LG 2 CI 2 Y
learning task at hand and are able to handle continuous node

features.



GNNs cannot exceed WL in terms of its expressivity

1
i (Expressed by neural networks) V o I
H 070 e—>0 <) o !
: (¢) o oe——>o0 o&o i
i . o/ ) ° o i
| <——— Most functions ——— o o o i
' Surjective Injective Bijective :
(not injective) (not surjective) (injective, surjective :
hu = ¢ Xuy @ w(Xu,Xv) i
LS Y e —— H
Q. What design choices are needed to make the function *injective as possible?
1. Use summation for aggregation 2. Use at least 2 layers of MLP
v v v v ® © L
w w ~- - > ® >
v v L A w Theorem [Xu et al., 2019] (informal)
- multiset - distributi - set

Input S T e A e One-layer ReLU MLPs are notinjective.

0. 1 [4, 2] [2/3, 1/3] or

W [ ’ ]

[0, 1]

* Does not necessarily mean the resulting neural network is injective.
For injectivity in neural networks, see Puthawala et al., “Globally Injective ReLU Networks”, J. Mach. Learn. Res. (2020)



GNNs cannot exceed WL in terms of its expressivity

1

1

i

' e o o o 1
1

H o o o o !
i .70 Q@ ——>»0 o o :
1 ° o o—>0 o o :
i o/ o ° o i
| <——— Most functions ——— o o o I
' Surjective Injective Bijective :
(not injective) (not surjective) (injective, surjective) |

i

1

1

Q. What design choices are needed to make the function *injective as possible?

Graph Isomorphism Networks (GIN)

h() = MLP®) (1 n E(k)) YIS . )h&k—n

/

*In my experience, just setting epsilon as a non-learnable pararmeter with O value works fine



Takeaways

1. Defining graphs being ‘identical’ = isomorphism
2. WL-isomorphism test: Heuristic that can be used for isomorphism, but not guaranteed in some cases

3. Connections: GNN’s message-passing and WL test, and GNN'’s limitations



Thank you!

Please feel free to ask any questions :)
yongmin.shin@lgresearch.ai
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Original presentation file

Feed free to contact me via email or teams etc. regarding
- GNN/graph learning

- Explainable Al (including mechanistic interpretability)
- Or any ML discussions



