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Graph Neural Networks have been successfully deployed to
learn from graph data and perform various graph tasks.
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Explainable Al is an important research topic,
and explanation of Graph Neural Networks is no exception.

Attribution maps are one of the Similar approaches are also
most popular ways, especially in CV and NLP. popular in GNN explanations, too.

Example: DTD [1], LRP [2], LIME [3], GradCAM [4], ... Example: GNNExplainer [5], PGExplainer [6], ...
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Early works adopted “general” attribution methods to GNNs,
and a plethora of GNN-tailored attribution methods have since been developed.
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However, most of the literature focuses on the explanation themselves,
but we can go beyond and towards one of the ultimate goal of XAl.

Enhance the performance based on the knowledge gained from the explanation

Most of the Iiterature:
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Our work attempts to observe whether we can directly use

node-level explanations in the literature to improve the GNN's efficiency.
Can we use the local edge attributions for graph pruning?



We focus on improving the efficiency of GNNs by graph pruning,
i.e., deletion of unimportant edges.

Time & space complexity is dependent on the number of edges.

| GCN [9] | VanillaSGD | GraphSAGE[10]| FastGCN [11] | VR-GCN [12] | Cluster-GCN[13]
Time complexity | O(L||A|[oF + LNF?) | O(d“NF?) O(rENF?) O(rLNF?) | O(L||A||oF + LNF? + r*NF?) | O(L||A||oF + LNF?)
Memory complexity | O(LNF +LF?) | O(bd"“F + LF?) | O(br’F + LF?) | O(brLF + LF?) O(LNF + LF?) O(bLF + LF?)

l|Allo = 2 X (Num. edges) / d: Average num. edges per node / r: Number of edges to aggregate from

Reduce the number of edges to 1) Increase efficiency & 2) Potentially remove noisy edges



FiP (Fidelity-inspired Pruning)
A framework that can perform graph pruning by taking local explanations as input.

Inutition: If an edge is frequently removed in Fidelity-, it may simply be removed from the original graph.
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We found that local graph explanations can be used for graph pruning,
but GNN-tailored methods underperform.
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GNN-tailored attribution methods perform poorly,
sometimes even worse than random deletion.
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We also found that fidelity- measures does not translate
to graph pruning despite logical appeal.

(1) Fidelity ™ = Z(f (G)o — F(G®),)
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on graph pruning.

Method BAShapes Cora Citeseer Pubmed

| Att 4.06 x 1072 367 x10°% 223x 10>  2.46 x 10° | Although Attention exhibit poor
SA 3.54x 1077 221 x10°7 890 x 102 246 x 107  fidelity- scores, it performs great
IG 6.25 x 10° 1.26 x 10° 568 x 1071  2.25 x 10°
GB 3.77 x 10° 1.42 x 10° 7.04x 107t 2.40 x 10°

[GNNEX 344 x10°7 214x107 3.52x 1071 2.46 x 10° ] Although GNNExplainer exhibit
PGEx 3.83x1077 2.04x107% 7.11x10"3 246 x 10°  greatfidelity- scores, it results in
FDnX  1.41x10~! 177x10"2 7.05x 10~ 246 x 10°  Pbadgraph pruning results.
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Conclusion: Explanation as graph pruning looks promising,
but many challenges remain.

The problem likely lies in the aggregation of local explanations & Limitation of graph pruning

Limitation of graph pruning approach
- Every node has a different explanation
« Asingle graph cannot fully express all
local explanation (lossy compression)

Limitation during aggregation

« Scale of attribution score across
nodes may be different

« Total number of edges for each explanation
may also affect how should we normalize



Takeaway messages

Explainable Al is an important research topic, and GNNSs are no exception.
Previous literature mainly focus on explanations itself
Ultimate goal of XAl: Enhance the original system using knowledge from XAl

Graph explanations can be effectively used for graph pruning

However, good fidelity does not translate well into graph pruning

The main limitation may be caused during aggregation, and the approach of graph pruning itself.

Paper

Thank you!
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