Resources mainly from Brady Neal's "Introduction to Causal Inference" and Marcelo Coca Perraillon's "Week 2: Causal Inference"

Concepts & Important Topics in Causal Learning

Wed. reading group Presenter: Yong-Min Shin jordan7186.github.io

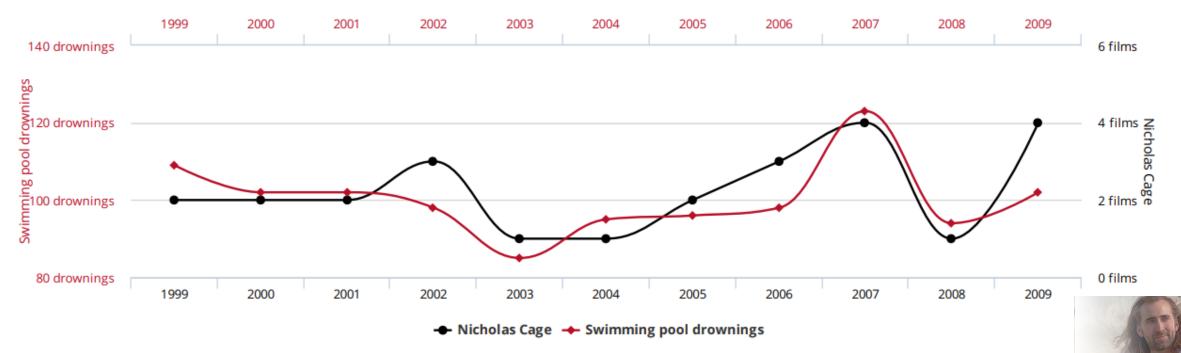
10th Jan. 2024

Concepts & Important Topics

- 1. Why does causal inference matter?
 - a. What is causal inference?
 - b. Simpson's paradox
 - c. Confounders, Potential outcomes, Individual Treatment Effect (ITE)
- 2. The fundamental problem of causal inference
 - a. Factuals & Counterfactuals
 - b. How to avoid the fundamental problem of causal inference
 - c. The flowchart of causal inference

What is causal inference?

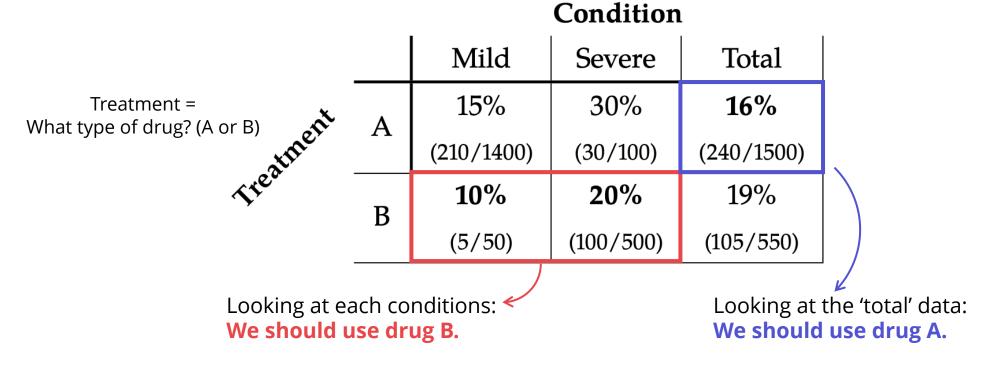
- Causation: Refers to the relationship between **cause** and **effect**.
 - "A happened <u>because of</u> B"
 - "B happened, therefore A has happened as a result"
 - Heavily used in economics, medical research, and recently, machine learning.
- "Correlation does not imply Causation"
 - Critical difference between statistic association and causal association.
 - Example data: Nicholas Cage vs. Swimming pool drownings
 - Did Nicholas Cage **cause** the national swimming pool drowning pandemic?



Simpson's paradox

- Knowing the causal structure of the data provides a deep understanding of the problem.
- Example dataset: Administering a drug to cure a patient

Table: Rate of death in patients after drug administeration.



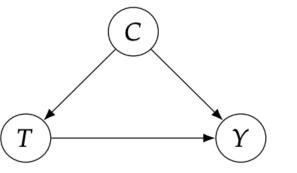
Which drug is more effective in reducing mortality rate?

Simpson's paradox

• Answer can be either A or B, **depending on the causal structure** of the problem.

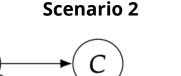
C =Some cause | T = Treatment: 1 (A) or 0 (B) | Y = Mortality: 1 (live) or 0 (die)

Scenario 1



<u>C = Condition of the patient</u>

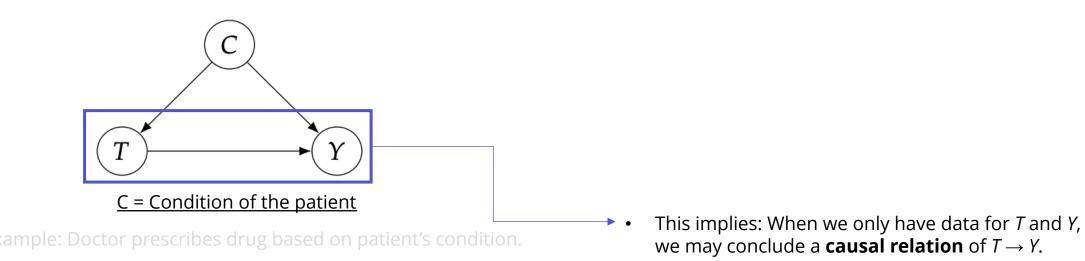
- Example: Doctor prescribes drug based on patient's condition. •
- (*C* = Mild)
 - Doctor prescribes drug A ($C \rightarrow T$)
 - Mild patients usually live $(C \rightarrow Y)$
 - vice versa
- Therefore, B is more effective in treating since the <u>patients</u> taking A probably has a mild condition in the first place.



<u>C = Development time of the disease</u>

- Example: Drug B is so rare to find that it takes a long time to actually administer to the patient.
- (*T* = B)
 - Patient has to wait a long time to get the drug $(T \rightarrow C)$
 - Which reduces the chance of cure $(C \rightarrow Y)$
 - vice versa
- Therefore, A is more effective in treating since the <u>patients</u> <u>don't need to wait too long to be cured</u>.

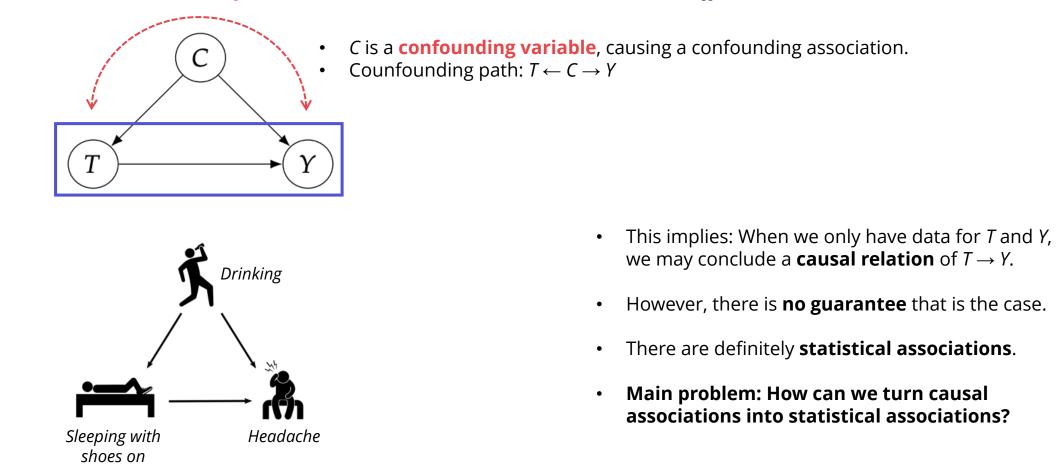
Confounders, Potential outcomes, Individual Treatment Effect (ITE)



- (*C* = Mild)
 - Doctor prescribes drug A ($C \rightarrow T$)
 - Mild patients usually live $(C \rightarrow Y)$
 - vice versa
- Therefore, B is more effective in treating since the <u>patients</u> taking A probably has a mild condition in the first place.

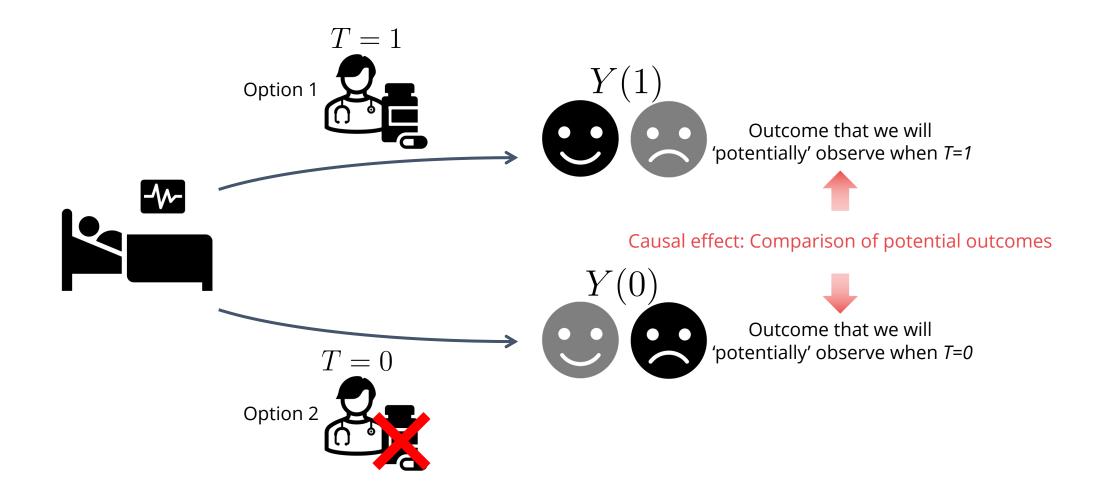
- However, there is **no guarantee** that is the case.
- There are definitely **statistical associations**.

Confounders, Potential outcomes, Individual Treatment Effect (ITE)



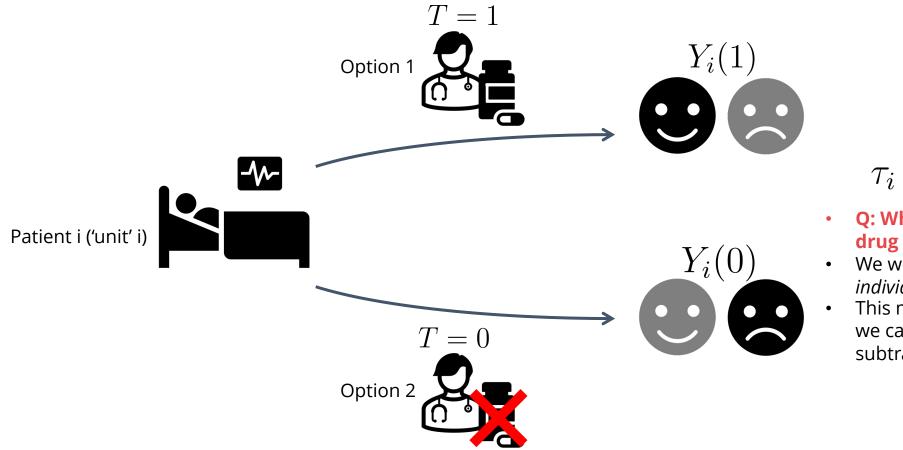
Confounders, Potential outcomes, Individual Treatment Effect (ITE)

- Potential outcomes: Possible outcome of a treatment
- Example scenario: Administering a drug to cure a patient



Confounders, Potential outcomes, Individual Treatment Effect (ITE)

• Example scenario: Administering a drug to cure a patient

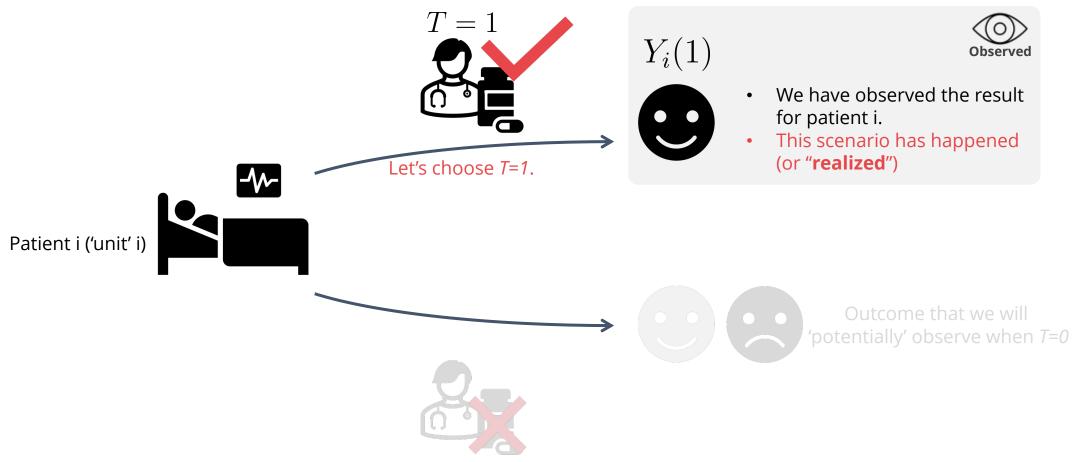


$$\tau_i = Y_i(1) - Y_i(0)$$

- Q: What is the causal effect of the drug for unit i?
- We woule like to observe the *individual treatment effect (ITE)* τ_i .
- This measures the causal effect, and we can use other forms beside subtractions (e.g., ratios)

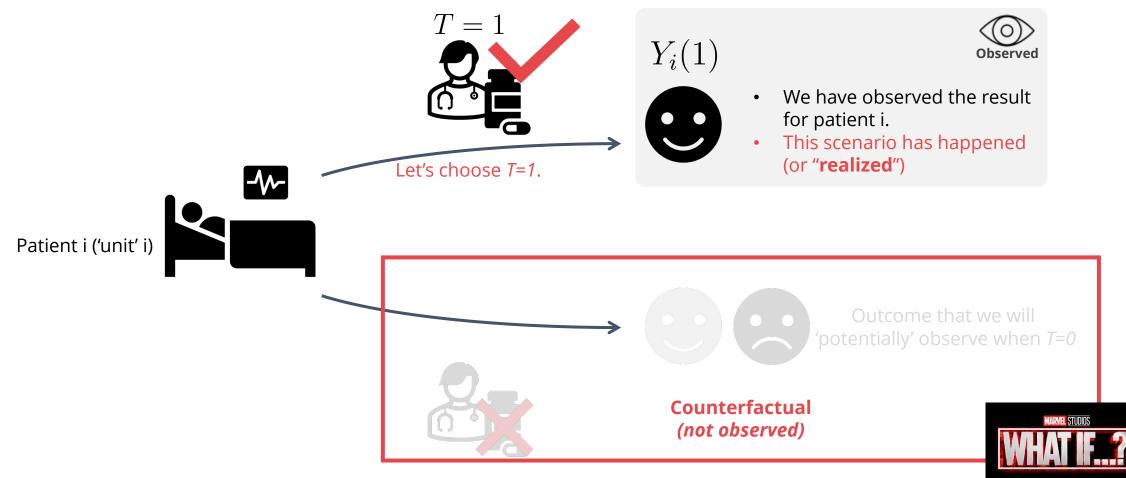
Factuals & Counterfactuals

- Potential outcome: The "potential" part refers to the idea that only one outcome is realized after the intervention (decision to prescribe the drug to unit i)
- Before the intervention, there were two potential outcomes. **Only one** is realized after the action is conducted



Factuals & Counterfactuals

- The observed timeline is a '**factual**', and the other potential scenario (which we will never know unless we develop a time machine) is '**counterfactual**'.
- Counterfactuals can also be described as 'what if? scenarios'
- Fundamental problem of causal inference: We do not observe all potential outcomes, just one.



Getting around the fundamental problem of causal inference

- Can we still calculate ITE?
- Or can we at least calculate the average ITEs over the units? = Average Treatment Effect (ATE)

$$\tau = \mathbb{E}[Y(1) - Y(0)]$$

- Can we calculate this causal quantity via an equivalent statistical quantity?
- Maybe just take the associational difference?:

Is this possible? Sadly, this is generally not the case. (Correlation is not causation)

$$\tau = \mathbb{E}[Y(1) - Y(0)]$$

= $\mathbb{E}[Y(1)] - \mathbb{E}[Y(0)]$ (linearity of expectation)
= $\mathbb{E}[Y(1)|T = 1] - \mathbb{E}[Y(0)|T = 0]$

Getting around the fundamental problem of causal inference

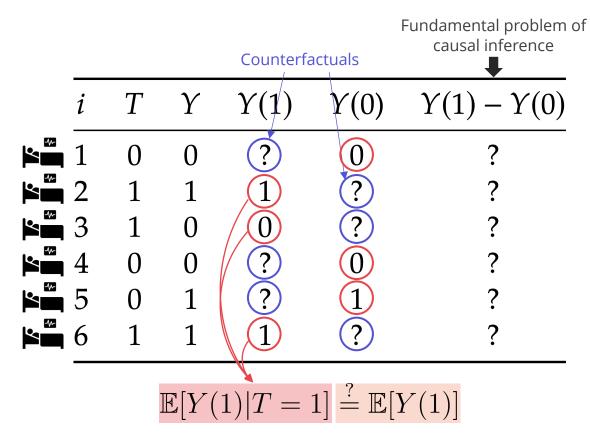
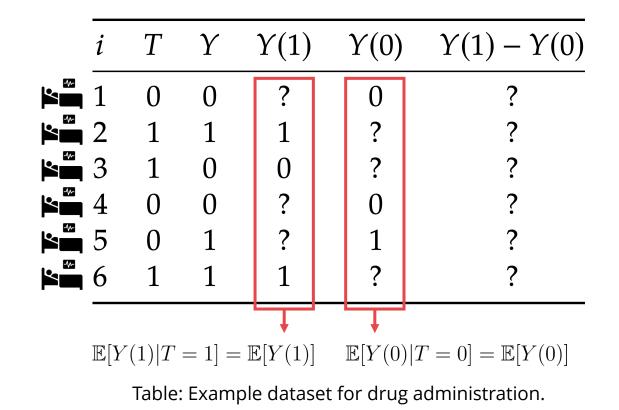


Table: Example dataset for drug administration.

- The table shows that the fundamental problem of causal inference can be seen as a missing data problem.
- Q: What assumption is required such that just taking the Y(1) column and ignoring the missing data points is enough?
- It only makes sense that the *T*=1 subpopulation represents the whole population.
 - The treatment group should not be biasedly selected in any way.
 - = The treatment is completely randomized
 - = Randomized Control Trials (RCTs)
 - = $\mathbb{E}[Y(1)|T=1] = \mathbb{E}[Y(1)|T=0]$ and vice versa.

Getting around the fundamental problem of causal inference



Ignorability / Exchangability assumption

 $(Y(1),Y(0))\perp T$

The **assignment of the treatment** to individual units must be **independent of potential outcomes** (completely random).

 \rightarrow This makes the <u>control group a very good proxy</u> of what would have happened to the treated group if they had not received the treatment (= <u>counterfactual</u>).

 $\tau = \mathbb{E}[Y(1) - Y(0)] \text{ Causal relation}$ $= \mathbb{E}[Y(1)|T = 1] - \mathbb{E}[Y(0)|T = 0] \text{ Statistical association}$ = 0 $= \mathbb{E}[Y(1)|T = 1] - \mathbb{E}[Y(0)|T = 1] + \mathbb{E}[Y(0)|T = 1] - \mathbb{E}[Y(0)|T = 0]$ $= \text{Average treatment effect on the treatement group (T=1)} \qquad = \text{Selection bias}$ = Selection bias = Selection bias

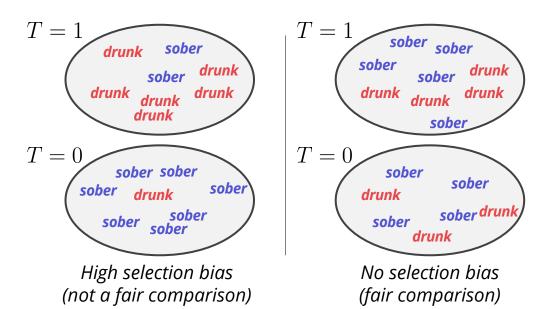
The ignorability assumption makes this sufficient to represent the whole population

We want this to be zero, which is assured by the ignorability assumption

Getting around the fundamental problem of causal inference

Revisiting the drinking example...

T=1: Sleep with shoes on / *T*=0: Sleep without shoes



Ignorability / Exchangability assumption

 $(Y(1),Y(0))\perp T$

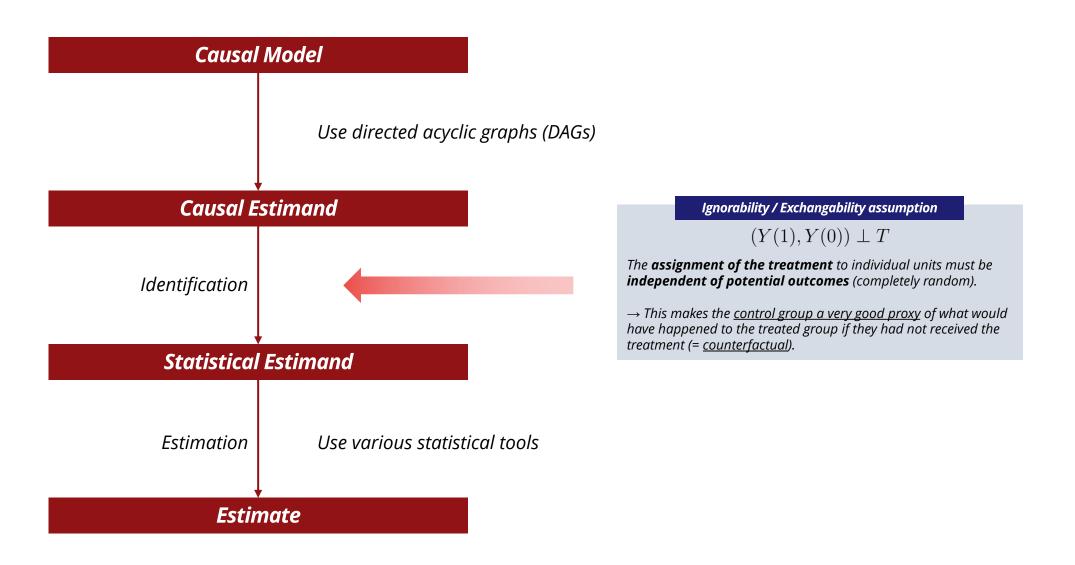
The **assignment of the treatment** to individual units must be **independent of potential outcomes** (completely random).

 \rightarrow This makes the <u>control group a very good proxy</u> of what would have happened to the treated group if they had not received the treatment (= <u>counterfactual</u>).

 $\tau = \mathbb{E}[Y(1) - Y(0)] \text{ Causal relation}$ $= \mathbb{E}[Y(1)|T = 1] - \mathbb{E}[Y(0)|T = 0] \text{ Statistical association}$ = 0 $= \mathbb{E}[Y(1)|T = 1] - \mathbb{E}[Y(0)|T = 1] + \mathbb{E}[Y(0)|T = 1] - \mathbb{E}[Y(0)|T = 0]$ = Average treatment effect on the = Selection bias = Selection bias We want this to be zero, which = is assured by the ignorability = assumption

represent the whole population

The flowchart of causal inference



17

- Causal structure is a framework for a deeper understanding of the underlying problem
- **Correlation does not imply Causation**, therefore we need to **identify** the causal estimand.
- Fundamental problem of causal inference: How do we get information from the counterfactual?
- **Randomized selection of the treatment group (RCTs)** is a great way to get around the fundamental problem of causal inference.

- Are there **other ways** to get around the fundamental problem of causal inference?
- How can we utilize this framework in **machine learning / deep learning research**?