Resources mainly from Brady Neal's "Introduction to Causal Inference". Additional reference from: Marcelo Coca Perraillon's "Week 2: Causal Inference" and David Rawlinson's "An introduction to Causal Inference with Python"

Towards the Frond-door Adjustment in Causal Learning

Wed. reading group Presenter: Yong-Min Shin jordan7186.github.io

10th Jan. 2024

Concepts & Important Topics

- 1. Recap: Why does causal inference matter?
 - a. What is causal inference?
 - b. Simpson's paradox
 - c. Confounders

Recap

- 2. Controlling counfounding factors with causal graphs
 - a. Basics of causal graphs
 - b. d-separation imples association is causation
 - c. The do-operator
 - *d. The front-door adjustment* ← Eventual goal

What is causal inference?

- Causation: Refers to the relationship between **cause** and **effect**.
 - "A happened <u>because of</u> B"
 - "B happened, therefore A has happened as a result"
 - Heavily used in economics, medical research, and recently, machine learning.
- "Correlation does not imply Causation"
 - Critical difference between statistic association and causal association.
 - Example data: Nicholas Cage vs. Swimming pool drownings
 - Did Nicholas Cage **cause** the national swimming pool drowning pandemic?

Simpson's paradox

- Knowing the causal structure of the data provides a deep understanding of the problem.
- Example dataset: Administering a drug to cure a patient

Table: Rate of death in patients after drug administeration.

Which drug is more effective in reducing mortality rate?

Simpson's paradox

• Answer can be either A or B, **depending on the causal structure** of the problem.

C = Some cause | T = Treatment: 1 (A) or 0 (B) | Y = Mortality: 1 (live) or 0 (die)

<u>C = Condition of the patient</u>

- Example: Doctor prescribes drug based on patient's condition.
- (*C* = Mild patient condition)
 - Doctor prescribes drug A ($C \rightarrow T$)
 - Mild patients usually live $(C \rightarrow Y)$
 - vice versa
- Therefore, B is more effective in treating since the <u>patients</u> taking A probably has a mild condition in the first place.

- (*C* = Mild)
 - Doctor prescribes drug A ($C \rightarrow T$)
 - Mild patients usually live $(C \rightarrow Y)$
 - vice versa
- Therefore, B is more effective in treating since the <u>patients</u> taking A probably has a mild condition in the first place.

- However, there is **no guarantee** that is the case.
- There are definitely **statistical associations**.

Confounders

- *C* is a **confounding variable**, causing a confounding association.
- Counfounding path: $T \leftarrow C \rightarrow Y$

• This implies: When we only have data for *T* and *Y*, we may conclude a **causal relation** of $T \rightarrow Y$.

7

- However, there is **no guarantee** that is the case.
- There are definitely **statistical associations**.
- Main problem: How can we turn causal associations into statistical associations?

Confounders

T=1: Sleep with shoes on / *T*=0: Sleep without shoes

(True) Causal association

Intervention by "forcing" subjects how to sleep

- Previous talk: <u>Randomized Control Trials (RCTs)</u> can eliminate the counfounding factor.
- Basic idea: If we <u>can</u> assume the counfounding factor has <u>affected the two groups (T=0 & T=1)</u> <u>equally via randomization</u>, we can safely compare the two groups without counfoundinig.
- Conceptually, this is the same as intervening subjects by randomly forcing them to either sleep with/without their shoes on.

Confounders

T=1: Sleep with shoes on / *T*=0: Sleep without shoes

(True) Causal association

Intervention by "forcing" subjects how to sleep

- What if we <u>can't</u> perform RCTs?
 - Moral issues: You can't deny a person their medications just because you want to perform RCTs
 - Highly impractical: You can't perform multiple RCTs to test your nation-level policies
- Is there a better way to get rid of the counfounding factor?

Basics of causal graphs: Chains & Forks

(Causality in graphs) A variable X is said to be a cause of a variable Y if Y can change in response to changes in X (i.e., Y 'listens' to X)

 X_1

• X_1 changes X_2 , which changes X_3 .

- The same X₂ determines both X₁ and X₃ (common cause).
- We have already seen this as the confounder.

Basics of causal graphs: Conditioning

Conditioning blocks the flow of association for chains & forks.

Basics of causal graphs: Conditioning (Example)

Unconditioned

- Healthier people tend to have less wrinkles
- Non-healthy people tend to have more wrinkles
- <u>"Seems like"</u> health and wrinkes are associated!

Conditioned to elderly people

 Just looking at the elderly population, health and wrinkles have no association with each other

Conditioning blocks the flow of association for chains & forks.

d-separation implies association is causation

(True) Causal association

Q. How can we isolate causal association?A. Only leave the causal association and d-separate all non-causal associations.

Now, association implies causation.

**d* stands for dependency

The do-operator: Difference from conditioning

The front-door adjustment: Alternative to RCTs (Finally!)

Problem: Can we calculate the causal association between T and Y by only focusing on M?

confounding association (W) (W) T (W) (W)(W)

causal association

Problem setting

only causal association Want to do something like...

The front-door adjustment: Alternative to RCTs (Finally!)

Problem: Can we calculate the causal association between *T* and *Y* by only focusing on *M*?

"Front-door adjustment"

Intuition: Instead of trying to remove all confounding associations, <u>ignore W and just focus on the mediating</u> <u>variable M</u>.

<3-steps for front-door adjustment>

- 1. Identify the causal effect of *T* on *M*.
- 2. Identify the causal effect of *M* on *Y*.
- 3. Combine step 1 & 2 to get the causal effect of T on Y.

The front-door adjustment: Alternative to RCTs (Finally!)

Problem: Can we calculate the causal association between T and Y by only focusing on M?

<3-steps for front-door adjustment>

- 1. Identify the causal effect of T on M.
- 2. Identify the causal effect of *M* on *Y*.
- 3. Combine step 1 & 2 to get the causal effect of *T* on *Y*.

It is safe to say: $P(m \mid do(t)) = P(m \mid t)$

The front-door adjustment: Alternative to RCTs (Finally!)

Problem: Can we calculate the causal association between T and Y by only focusing on M?

<3-steps for front-door adjustment>

- 1. Identify the causal effect of *T* on *M*.
- 2. Identify the causal effect of *M* on *Y*.
- 3. Combine step 1 & 2 to get the causal effect of T on Y.

Unfortunatelly, *M* and *Y* are confounded ($M \leftarrow T \leftarrow W \rightarrow Y$), so we use the *back-door adjustment formula:

$$P(y \mid do(m)) = \sum_{t} P(y \mid m, t) P(t)$$

*Omitted for brevity

The front-door adjustment: Alternative to RCTs (Finally!)

Problem: Can we calculate the causal association between T and Y by only focusing on M?

$$P(y, |do(t)) = \sum_{m}^{(\text{Step 1})} P(m|t) \sum_{t'}^{(\text{Step 2})} P(y|m, t') P(t')$$

<3-steps for front-door adjustment>

- 1. Identify the causal effect of *T* on *M*.
- 2. Identify the causal effect of *M* on *Y*.
- 3. <u>Combine step 1 & 2 to get the causal effect of T on Y.</u>

20

*Intuition: https://probablymarcus.com/blocks/2021/11/04/some-causal-inference-intuition.html

- Causal structure is a framework for a deeper understanding of the underlying problem
- Correlation does not imply Causation, and Randomized Control Trials (RCTs) is the gold standard to achieve causal inference.
- There are other ways to identify causal effect: Back-door adjustment & **Front-door adjustment**

Appendix: Intuition for Front-door adjustment

