
Resources	mainly	from	Brady	Neal’s	“Introduction	to	Causal	Inference”.
Additional	reference	from:	Marcelo	Coca	Perraillon’s	“Week	2:	Causal	Inference”	and	David	Rawlinson’s	“An	introduction	to	Causal	Inference	with	Python”
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Recap

← Eventual goal



3

• Causation: Refers to the relationship between cause and effect.
• “A happened because of B”
• “B happened, therefore A has happened as a result”
• Heavily used in economics, medical research, and recently, machine learning.

• “Correlation does not imply Causation”
• Critical difference between statistic association and causal association.
• Example data: Nicholas Cage vs. Swimming pool drownings
• Did Nicholas Cage cause the national swimming pool drowning pandemic?
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• Knowing the causal structure of the data provides a deep understanding of the problem.
• Example dataset: Administering a drug to cure a patient

Treatment = 
What type of drug? (A or B)

Table: Rate of death in patients after drug administeration.

Looking at the ‘total’ data: 
We should use drug A.

Looking at each conditions: 
We should use drug B.

Which drug is more effective in reducing mortality rate?
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• Answer can be either A or B, depending on the causal structure of the problem.

C = Some cause  |  T = Treatment: 1 (A) or 0 (B)  |  Y = Mortality: 1 (live) or 0 (die)

Scenario 1

C = Condition of the patient

• Example: Doctor prescribes drug based on patient’s condition.

• (C = Mild patient condition) 
• Doctor prescribes drug A (C → T)
• Mild patients usually live (C → Y)
• vice versa

• Therefore, B is more effective in treating since the patients 
taking A probably has a mild condition in the first place.
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C = Condition of the patient

• Example: Doctor prescribes drug based on patient’s condition.

• (C = Mild) 
• Doctor prescribes drug A (C → T)
• Mild patients usually live (C → Y)
• vice versa

• Therefore, B is more effective in treating since the patients 
taking A probably has a mild condition in the first place.

• This implies: When we only have data for T and Y, 
we may conclude a causal relation of T → Y.

• However, there is no guarantee that is the case.

• There are definitely statistical associations.
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• This implies: When we only have data for T and Y, 
we may conclude a causal relation of T → Y.

• However, there is no guarantee that is the case.

• There are definitely statistical associations.

• Main problem: How can we turn causal 
associations into statistical associations?

• C is a confounding variable, causing a confounding association.
• Counfounding path: T ← C → Y

Drinking

Sleeping with 
shoes on

Headache
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Drinking

Sleeping with 
shoes on

Headache

T=1: Sleep with shoes on / T=0: Sleep without shoes
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sober
sober

sobersober

sober

drunk sober

High selection bias 
(not a fair comparison)

No selection bias 
(fair comparison)

drunk
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sobersober
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sober

sober

sober

sober
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• Previous talk: Randomized Control Trials (RCTs) 
can eliminate the counfounding factor.

• Basic idea: If we can assume the counfounding 
factor has affected the two groups (T=0 & T=1) 
equally via randomization, we can safely 
compare the two groups without counfoundinig.

• Conceptually, this is the same as intervening 
subjects by randomly forcing them to either 
sleep with/without their shoes on.

Confounding path

(True) Causal association Intervention by “forcing” 
subjects how to sleep

This causal link 
is removed
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• What if we can’t perform RCTs? 
• Moral issues: You can’t deny a person their 

medications just because you want to 
perform RCTs

• Highly impractical: You can’t perform 
multiple RCTs to test your nation-level 
policies

• Is there a better way to get rid of the 
counfounding factor?

Drinking

Sleeping with 
shoes on

Headache

T=1: Sleep with shoes on / T=0: Sleep without shoes

drunk

drunk drunk
drunk

drunk
drunk

sober

sober

sober

sober
sober

sobersober

sober

drunk sober

High selection bias 
(not a fair comparison)

No selection bias 
(fair comparison)
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Confounding path

(True) Causal association Intervention by “forcing” 
subjects how to sleep

This causal link 
is removed



10

Fork

• (Causality in graphs) A variable X is 
said to be a cause of a variable Y if 
Y can change in response to 
changes in X (i.e., Y ‘listens’ to X)

Chain

Causes

Flow of association
(Statistical dependence)

• X₁ and X₃ are usually statistically 
dependent.

• X₁ changes X₂, which changes X₃.

• X₁ and X₃ are usually statistically 
dependent.

• The same X₂ determines both X₁ and X₃ 
(common cause).

• We have already seen this as the 
confounder.

Common cause
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Fork

Chain

Conditioning blocks the flow of association for chains & forks.

Flow of association
(Statistical dependence)

(Markov assumption 
& Bayes rule)

Conditioning on X₂

(Bayes rule)

X₁ and X₃ are conditionally 
independent on X₂.

Conditioning on X₂

Conditioned
variable

(Markov assumption 
& Bayes rule)

Blocked path

Blocked path
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Unconditioned

Conditioning blocks the flow of association for chains & forks.

Flow of association
(Statistical dependence)

Conditioning
on Age

Conditioned
variable

Age

Health # of face 
wrinkles

Age

Health # of face 
wrinkles

Conditioned to elderly people

• Healthier people tend to have less 
wrinkles

• Non-healthy people tend to have more 
wrinkles

• “Seems like” health and wrinkes are 
associated!

• Just looking at the elderly population, 
health and wrinkles have no association 
with each other

Blocked path
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Blocked path

Blocked path

X₁ and X₃ are *d-separated

Confounding path

(True) Causal association

Q. How can we isolate causal association?
A. Only leave the causal association and 
d-separate all non-causal associations.

Now, association implies 
causation.

C

*d stands for dependency

Blocked path

This type is called immorality, 
excluded for the sake of time

Blocked path
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Confounding path

(True) Causal association Intervention by “forcing” 
subjects how to sleep

This causal link 
is removed

Drinking

Sleeping with 
shoes on

Headache

We have a mathematical operator for 
these interventions: do-operator

do-operator
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do-operator

We can see the fundamental 
problem of causal inference here 
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Problem: Can we calculate the causal association between T and Y by only focusing on M?

Problem setting Want to do something like…
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Problem: Can we calculate the causal association between T and Y by only focusing on M?

“Front-door adjustment”

Intuition: Instead of trying to remove all confounding 
associations, ignore W and just focus on the mediating 
variable M.

<3-steps for front-door adjustment>
1. Identify the causal effect of T on M.
2. Identify the causal effect of M on Y.
3. Combine step 1 & 2 to get the causal effect of T on Y.
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Problem: Can we calculate the causal association between T and Y by only focusing on M?

<3-steps for front-door adjustment>
1. Identify the causal effect of T on M.
2. Identify the causal effect of M on Y.
3. Combine step 1 & 2 to get the causal effect of T on Y.

It is safe to say:
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Problem: Can we calculate the causal association between T and Y by only focusing on M?

<3-steps for front-door adjustment>
1. Identify the causal effect of T on M.
2. Identify the causal effect of M on Y.
3. Combine step 1 & 2 to get the causal effect of T on Y.

Unfortunatelly, M and Y are confounded 
(M ← T ← W → Y), so we use the 
*back-door adjustment formula:

*Omitted for brevity
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Problem: Can we calculate the causal association between T and Y by only focusing on M?

<3-steps for front-door adjustment>
1. Identify the causal effect of T on M.
2. Identify the causal effect of M on Y.
3. Combine step 1 & 2 to get the causal effect of T on Y.

(Step 1)
T → M

(Step 2)
M → Y

*Intuition: https://probablymarcus.com/blocks/2021/11/04/some-causal-inference-intuition.html
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Reference: https://probablymarcus.com/blocks/2021/11/04/some-causal-inference-intuition.html

Intervention

C

T Y

C

T Y

Back-door adjustment

T Y

T Y

T Y

…

C=0

C=1

C=c
Intervention cuts 

the causal link

Each T → Y is causal when 
conditioned on C

*Caveat: All confounders need to 
be controlled this way

Weighted sum
(weighted by P(C))

Front-door adjustment

C

T YM
Direct causal link
(no confounders)

Treat T as the 
confounder, perform 

back-door adjustment


