Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding

Presenter: Yong-Min Shin

28th Humantech paper award

Introduction

Network embedding with graph neural networks (GNNs)

Introduction

Edgeless nodes: Real-world example

Examples

- Social network: <u>Completely new user</u> or <u>hide relations due to privacy</u> in social platforms (e.g., Facebook)
- Citation network: <u>Single / isolated author</u>

Challenge

How to apply GNNs to nodes without edges?

Examples

- Social network: <u>Completely new user</u> or <u>hide relations due to privacy</u> in social platforms (e.g., Facebook)
- Citation network: <u>Single / isolated author</u>
- Conventional GNNs cannot operate for nodes without any edges
- Can we design a new GNN-model-agnostic framework that can learn representations for such edgeless nodes?

Methodological contributions

Key idea 1: Computation graph construction

Biggest challenge: GNNs cannot perform computation to nodes without edges

Methodological contributions

Key idea 2: GNN-agnostic inductive framework

Methodological contributions

Key idea 3: Design of loss function

Embedding space

Empirical contributions

Experiment procedure

* As Edgeless-GNN can operate on most GNNs, we investigate on well-known models from the literature.

Empirical contributions

Empirical analysis on Edgeless-GNN

Empirical & Analytical contributions

Performance comparison & Complexity

Experimental results on Cora dataset (partial)			
Task	Link prediction	Node classification	Community detection
Metric	AUC (†)	Macro F1 (↑)	NMI (↑)
Edgeless-GNN	<u>0.8905</u> ± 0.012	<u>0.6783</u> ± 0.014	<u>0.5109</u> ± 0.021
DEAL (Hao et al., 2020)	0.8585 ± 0.011	0.6410 ± 0.033	0.4321 ± 0.019
G2G (Bojchevski et al., 2018)	0.7966 ± 0.047	0.5983 ± 0.017	0.4089 ± 0.035
*Att-Only	0.7546 ± 0.013	0.4923 ± 0.035	0.2213 ± 0.060

Performance comparison

- The superiority is achieved from the loss function design.
 - 1. Pushing negative node pairs w.r.t. shortest-path distance
 - 2. Additionally considering second-order positive relations
- DEAL: Originally designed for link prediction
- G2G: KL divergence in loss does not preserve transitivity

*Att-Only: Use given node attributes as representations

Conclusion

- 1. World's first attempt to apply GNNs to edgeless nodes
- 2. New <u>inductive</u> and <u>unsupervised</u> framework design of GNNs for edgeless nodes
- 3. Our Edgeless-GNN framework outperforms previous state-of-the-art methods by virtue of our judiciously designed loss