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Objectives

Part 1: A practical introduction to graphs and graph neural networks

—_—
.

Understanding of graphs as a general data type
2. Understanding of the general framework of graph neural networks (GNNs)

Part 2: Towards explainable graph learning with attention

1.  Understanding the basic concepts of explainable Al
2. Answer to the question: Can we understand graph attention networks
using attention?

* Presentation slides are also available at:

Al
B I:III L
(jordan7186.github.io/presentations/) |m -




Part 1: A practical introduction to graphs and graph neural networks

Understanding of graphs as a general data type

*This part is heavily influenced by one of my academic heros, Petar Velickovi¢. These are some materials from his public materials that | have referred to:
- (Slide) Everything is Connected: Graph Neural Networks from the Ground Up (2021)
- (Blog) Graph & Geometric ML in 2024: Where We Are and What’s Next (Part Il — Applications)



Graphs as an abstract datatype !

Graphs are an abstract type of data where nodes (entities) are connected by edges (connections)

(Optional)

“H _EN

Undirected edge

B
(Optional)
Edge features / attributes

Undirected graph

Node features / attributes

(Optional)
Node features / attributes

Directed edge

(Optional)
dge features / attributes

Directed graph

...But honestly, looking at this does not result in a practical understanding of graphs.

Therefore, we will look at various applications in the field of graph machine learning
before moving our discussion further.



Area 1) Biology & Chemistry Research

Example 1: The discovery of Halicin, GNN-guided antibiotic discovery

Training GNNs with real-world chemical dataset
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.
Yang, Kevin, et al. "Analyzing learned molecular representations for property prediction." Journal of chemical information and modeling 59.8 (2019): 3370-3388.



Area 2) ETA prediction

Example 2: DeepMind’s improvement of Google map’s ETA (Estimated Time of Arrival) prediction

S S ~
Google Maps ETA Improvements Around the World : { : 1
: : ) | Predictions
Denver Chicago Copenhage Bangkol n : : %
20% 27% T6% ﬁko/: Anonymised Supersegments Graph neural
travel data Analysed Training network
| data
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Google Maps Candidate

rOUtlng user routes
system A-B

Unlike chemical datasets, constructing a graph is less straightforward.
In these cases, how to construct the graph is also a crucial contribution.

Derrow-Pinion, Austin, et al. "ETA prediction with graph neural networks in google maps.“, CIKM 2021.
Deepmind, “Traffic prediction with advanced graph neural networks”



Area 3) Recommdender systems

Example 3: Pinterest (social platform)

Image & User interaction in Pinterest

,. User-item interaction graph
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Source: Andrew Zhai (Pinterest) talk @WWW 2022 (link)
Right figure: Hou et al., Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity, SIGIR 2024


https://www2022.thewebconf.org/wp-content/uploads/Sponsors/WWW2022-Pinterest.pdf

Area 3) Recommdender systems

Applied Research Track

CIKM 20, October 1923, 2020, Virtual Event, Ireland

P-Companion: A Principled Framework for Diversified
Complementary Product Recommendation

Junheng Hao™*

Universityg
[jhao,yzs b

ABSTRACT

Complementary product recommendation (CPKMigging at provid-
ing product suggestions that are often bought togeth¢i <<

joint demand, forms a pivotal component of e-commerce service,
however, existing methods are far from optimal. Given one product,
how to recommend its complementary products of different type
the key problem we tackle in this work. We first conduct an analysis
to correct the inaccurate assumptions adopted by existing work to
show that co-purchased products are not always complementary
and further propose a new strategy to generate clean distant super-
vision labels for CPR modeling. Moreover, to bridge in the gap from
existing work that CPR does not only need relevance modeling
but also requires diversity to fulfill the whole purchase demand,
we develop a deep learning framework, P-Companion, to explicitly
‘model both relevance and diversity. More specifically, given one
product with its product type, P-Companion first uses an encoder-
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Applied Data Science Track Paper

KDD '20, August 23-27, 2020, Virtual Event, USA

ConSTGAT: Contextual Spatial-Temporal Graph Attention
Network for Travel Time Estimation at Baidu Maps

Xiaomin Fang, Jizhou Huang®, Fan Wang, Lingl-
B(m yhil
{fangxiaomin01, huangjizhou01,wang 1«

o s
in intelligent transportation systems s ai@

ning, and ride-hailing services. This task is challenging because
of many essential aspects, such as traffic prediction and contex-

tual information. First, the accuracy of traffic prediction is strongly
correlated with the traffic speed of the road segments in a route. Ex-
isting work mainly adopts spatial-temporal graph neural networks
to improve the accuracy of traffic prediction, where spatial and
temporal information is used separately. However, one drawback is
that the spatial and temporal correlations are not fully exploited to
obtain better accuracy. Second, contextual information of a route,
i.e., the connections of adjacent road segments in the route, is an es-
sential factor that impacts the driving speed. Previous work mainly

uses sequential encoding models to address this issue. However, it
is difficult to scale up sequential models to large-scale real-world

ABSTRACT
The task of travel time estimation (TT il
time for a given route and departure

Example 4: Other industry usecases

AliGraph: A Comprehensive Graph Neural Network

Platform

Rong Zhu, Kun Zhao, Hongxia Yang* 5

{red.zr, kun.zhao, yang.yhx, weili

ABSTRACT A
An increasing number of machine | dd
with large graph datasets, which ca [

ship among potentially billions of elements. Graph \lcural Network DIC
(GNN) becomes an effective way to address the graph learning ies, |
problem by converting the graph data into a low dimensional space 2%
while keeping both the structural and property information to the e
maximum extent and constructing a neural network for training clasp
and referencing. However, it is challenging to provide an efficient s |
graph storage and computation capabilities to facilitate GNN train-

ing and enable development of new GNN algorithms. In this paper, puta
we present a comprehensive graph neural network system, namely "2
AliGraph, which consists of distributed graph storage, optimized ~ SU¢!
sampling operators and runtime to efficiently support not only exist- f""‘l‘;

ing popular GNN' but also a series of in-house developed ones for

Graph Neural Networks for Friend Ranking
in Large-scale Social Platforms

Aravind SQanlar
University « “hampaign

ABSTRACT
Graph Neural Networks
advances in graph learn presentational ca-
pacity, GNNs remain una. ile social modeling
applications. One such induscisay uwiquicous application is friend
suggestion: recommending users other candidate users to befriend,
to improve user connectivity, retention and engagement. However,
modeling such user-user interactions on large-scale social platforms
poses unique challenges: such graphs often have heavy-tailed de-
gree distributions, where a significant fraction of users are inactive
and have limited structural and engagement information. More-
over, users interact with different functionalities, communicate with
diverse groups, and have multifaceted interaction patterns

We study the application of GNN for friend suggestion, pro-
viding the first investigation of GNN design for this task, to our
knowledge. To leverage the rich knowledge of in-platform actions,
we formulate friend suggestion as multi-faceted friend ranking with
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Knowing your FATE: Friendship, Action and Temporal
Explanations for User Engagement Prediction on Social Apps

Xianfeng ~

ABSTRACT

With the rapid growth
tions (Apps) in recent yc r engagement has
become increasingly impos e, « « aseful insights for fu-
ture App design and development. While several promising neural
modeling approaches were recently pioneered for accurate user
engagement prediction, their black-box designs are unfortunately
limited in model explainability. In this paper, we study a novel prob-
lem of explainable user engagement prediction for social network
Apps. First, we propose a flexible definition of user engagement
for various business scenarios, based on future metric expectations.
Next, we design an end-to-end neural framework, FATE, which
incorporates three key factors that we identify to influence user en-
gagement, namely friendships, user actions, and temporal dynamics
to achieve explainable engagement predictions. FATE is based on a

network .\pp]u a-

tensor-based graph neural network (GNN), LSTM and a mixture
attention mechanism_which allows for (a) nredictive exnlanations

¥, Neil Shah¥, Xiaolin Shi

Penns\l\ama State Umversm Sna:j Inc

. Prasenjit Mitra®, Suhang Wang**

t) understand the return of

exisfing users tming different lenu such as churn rate prediction
[38] L\ml

span analysis [39]. Others model user engagement with
features (e.g. ) [1] and his-
torical statistic features (e.g., user activities) [19]. Recently, Liu et al
[20] propose using dynamic action graphs, where nodes are in-App
actions, and edges are transitions between actions, to predict future
activity using a neural model

Despite some success, existing methods generally suffer from the
following: (1) They endship dependencies or ignore
user-user interactions when modeling user engagement. As users
are connected in social Apps, their engagement affects each other
[32). For example, active users may keep posting new contents,
which attract his/her friends and elevate their engagement. Thus,
it is essential to capture friendship dependencies and user interac-
tions when modeling user engagement. (2) Engagement objectives
may differ across Apps and even across features. For example, an




Area 4) Modeling physical systems

Example 5: Simulation of complex physical systems
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Similar to the ETA prediction task, how to construct the edges between particles
will highly impact the rest of the learning process.

Sanchez-Gonzalez et al., Learning to Simulate Complex Physics with Graph Networks, ICML 2020



Area 5) Images are actually grid-like graphs

Example 6: MNIST and MNIST-sp

MNIST MNIST Superpixel
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MNIST-sp is quite commonly used as a benchmark dataset in the graph domain.

(Left) Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs”, CVPR 2017
(Right) https://github.com/pyg-team/pytorch_geometric/issues/320



In academia; Benchmark datasets in the literature

Social Citation / Web Molecules Biology / Simulation / etc.
“ 2)
kl\"\. o
s ‘:’ .
H ._.-" : [
., \ %
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Observed dynamics Interaction graph
4)
Node: People / Account Node: Paper Node: Atom ‘
Edge: Connection Edge: Citation Edge: Bond
Node feature: Metadata Node feature: Abstract Node feature: Atom type

Edge feature: Bond type

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff Select benchmark datasets -
 *Planetoid dataset

* Reddit (Cora/Citeseer/Pubmed) * QM9 1) **PPI (protein-protein interaction)

* Ego-Facebook « Coauthor * Zinc 2) Physical simulation (Kipf et al., 2018)

«  Github * WebKB « MUTAG 3) 3D point cloud (Wang et al., 2019)
(Texas/Cornell/etc.) 4) Road network (Derrow-Pinion et al., 2021)

...and so much more
Yang et al., Revisiting Semi-Supervised Learning with Graph Embeddings, ICML 2016
Kipf et al., Neural Relational Inference for Interacting Systems, ICML 2018
Wang et al., Dynamic Graph CNN for Learning on Point Clouds, ACM Transactions on Graphics 2019
Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, CIKM 2021
**Image source: https://www.researchgate.net/publication/324457787_iTRAQ_Quantitative_Proteomic_Analysis_of_Vitreous_from_Patients_with_Retinal_Detachment/figures?lo=1


https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html
https://snap.stanford.edu/data/ego-Facebook.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.GitHub.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WebKB.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.ZINC.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html

Representing the graph as a adjacency matrix

P RN « We treat undirected edges as

7 “ two directed edges going in both directions

1 2 3 4 5
110[1(0(0|O0
» 211011111
3]011]0(0]|1
4/011(10(10|0
5(011(0|1]0
Undirected graph Assign arbitrary node ordering Adjacency matrix
- Graphs with canonical node ordering - Represent edge by assigning 1 for (i, j)-th
is not common element if node i and j are connected
- Related research topic: Positional - For weighted graphs: Assign a real
encoding in graphs number
(Maskey et al., NeurlPSW 2022) - For graphs with multiple edges: Assign
integers

- For directed graphs: Asymmetric matrix

Maskey et al., Generalized Laplacian Positional Encoding for Graph Representation Learning, NeurlPS 2022 Workshop on Symmetry and Geometry in Neural Representations



Representing the graph as a adjacency matrix

-
-

-~ =~ *We treat undirected edges as

63/\@“ two directed edges going in both directions
N/ //

Undirected graph Assign arbitrary node ordering
- Graphs with canonical node ordering

is not common

- Related research topic: Positional
encoding in graphs
(Maskey et al., NeurlPSW 2022)

D (12.2123).32),.

Edge list
Represent graph by listing all edges
Notice that for undirected edges,
(i, j) and (j,i) both appear
More memory efficient than (dense)
adjacency matrix

Maskey et al., Generalized Laplacian Positional Encoding for Graph Representation Learning, NeurlPS 2022 Workshop on Symmetry and Geometry in Neural Representations



Part 1: A practical introduction to graphs and graph neural networks

Understanding of the general framework of graph neural networks (GNNs)

14



A simple, popular, and straightforward GNN

GCN (Graph Convolutional Network): Kipf & Welling, ICLR 2017

We are now ready to understand the basic principles of GNN, by looking at the most popular architecture.
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Notice that, this whole procedure can be neatly expressed as: O(AX@)

Non-linear activation function O'() n: # of nodes
Adjacency matrix A -~ Ran d: node feature dimensions
: nxd . ,
Node feature matrix X - R d’: dimension for the next layer

/
Learnable matrix @ & RdXd



A deeper look into the node ordering problem

Alternate e AX f—
universe? ] 0 1 1 1) — —
(Different O | 8 8 (1) — - iyt
node 01 1 1 110 0/\e=m =
ordering) 1 0 0 1 = MLP
A= 1 0 0 0 |
1 1 0 O [ 1 + [ ] + [ ]




A deeper look into the node ordering problem

Node 3 -+

Node 4 I
Y

MLP

I

We are still computing for the same node,
Il therefore the aggregation result should
not change (permutation invariant)

As we have changed the node
order, this should also be

reflected in the embedding matrix

(permutation equivariant)

Y MLP



Practical design choices of GCN

Of course, we can get creative with the graph structure to solve some practical issues

Problem 1: The information of the neighbor nodes are aggregated but not the node itself.
Problem 2: The adjacency matrix is not normalized, and the scale of the feature vectors may explode for repeated layers.

Resolution to problem 1 Resolution to problem 2

Add self-loops to each node Normalization of A:

Neighbor count: 4
. ) D=
Neighbor count: 3

Neighbor count: 2

S O O =
o O w o
O w o O
N O OO

A=D-V2AD1/2
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1
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Final layer of GCN: 0 (A X ©)



Abstraction: A general message-passing layer of GNNs

3. Readout phase

1. Message passing phase (Aggregation) 2. Update phase (Transformation) (Only for graph-level tasks)
t+1 E : t t t+1 t t—|—1 T T
Mt th)hw)eU’w) h,v —U(h ) hG :R(hl7 ’hV)
weN (v)

*Usually, we cite these papers for the term “message-passing”
[First formal introduction of the concept] Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017
[Comprehensive discussion & abstraction] Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv 2021



Abstraction: A general message-passing layer of GNNs

GNN layer (Message-passing neural networks)

SP

hu = ¢ Xus 69 ¢(Xu, X,U) This operation must be permutation

invariant to ensure the same result for
vEN,, different node orderings!
4 Summation / Average / Max pooling etc.

So if we re-describe GCN for node 4, it would be...

N, = {1,3,5} U {4} zp(y;u,}q):ﬂl74

x; ¢ = MLP

*Usually, we cite these papers for the term “message-passing”
[First formal introduction of the concept] Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017
[Comprehensive discussion & abstraction] Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv 2021



Abstraction: A general message-passing layer of GNNs

Example: GAT (Velickovic et al., ICLR 2018)

hu :¢ Xu s 69

VEN,,

attention will be much more clear:

(X, Xo)

Compare this part with GCN, the role of w(xu’ Xl) =

1
V2 X 4

The model decides the strength of the ‘propagation’

No ={1,3,5}U {4} ¥(xy,x1) =|a(xy,x1)

X1 gb = MLP

X1

The node degree decides the strength of the ‘propagation’



There are a lot of fun & fundamental topics in the GNN literature

To name a few...

Relationship between GNNs and

Industry-scale GNNs Graph Signal Processing Explainable GNN

(usually recommendation systems) . (this is part 2)

N N

Basic GNN architecutures
(GCN, GraphSAGE, GAT, GIN, etc.)

= A

Overcoming limitations: v Expressivity of GNNs:
Oversmoothing & GNN-to-MLP knowledge Connections to the Weisfeiler-

Oversquashing in deep GNNs distillation for fast inference Lehman isomorphism test



Before moving on, one slide on the library for graph learning

PyTorch Geometric (link) Deep Graph Library (link)

PyG Documentation DEEP GRAPH LIBRARY

*Easy Dgep Learning on Graphs

@ PyG (PyTorch Geometric) is a library built upon O PyTorch to easily write and train Graph Neural
Networks (GNNs) for a wide range of applications related to structured data.

-

It consists of various methods for deep learning on graphs and other irregular structures, also
known as geometric deep learning, from a variety of published papers. In addition, it consists of

N . / . ) Framework Agnostic Efficient And Scalable Diverse Ecosystem
easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-
< : Build your models with PyTorch, TensorFlow or Fast and memory-efficient message passing DGL empowers a variety of domain-specific
support, torch.compile support, DataPipe support, a large number of common benchmark datasets Apache MXNet. primitives for training Graph Neural Networks. projects including DGL-KE for learning large-
(based on simple interfaces to create your own), the GraphGym experiment manager, and helpful Scale to giant graphs via multi-GPU acceleration scale knowledge graph embeddings, DGL-LifeSci
transforms, both for Iearning on arbitrary graphs as well as on 3D meshes or point clouds < ) 1F @ and distributed training infrastructure. for bioinformatics and cheminformatics, and
g . many others.

* Jure Leskovec (Standford/KumoAl/Snapchat) * Slower library updates
* Faster library updates * Variable framework support
* (Seems like) A larger community * Can be tricky to install older versions

Additonal library: NetworkX (link) — Library for graphs in general

NetworkX * Not a library for ML/DL

O(® Network Analysis in Python * Often used in junction with PyG/DGL



https://pytorch-geometric.readthedocs.io/en/stable/
https://www.dgl.ai/
https://networkx.org/documentation/stable/index.html

Wait, just one more slide on the library for graph learning

A very small PyG example

import torch
from torch_geometric.data import Data

edge_index = torch.tensor([[0, 1, 1, 2],
(1, @, 2, 1]1], dtype=torch.long)
x = torch.tensor([[-1], [@], [1]], dtype=torch.float)

data = Data(x=x, edge_index=edge_index)
>>> Data(edge_index=[2, 4], x=[3, 1])

You at minimum need to define data.edge_index

Node features are usually represented as data.x

Don’t forget to include both directions for

undirected graphs

Most graph processing/manipulation tools are in
torch_geometric.utils. Or just transform into a networkx
object!



Part 2: Towards explainable graph learning with attention

Understanding the basic concepts of explainable Al

25



Why explainable Al?

Neural networks have complex structure with a lot of parameters.

Input x: image Output f(x) - Large number of parameters
- High-nonlinearity
- Complex inner structure

has made them very *hard to interpret and understand,

making it a [s]Ele @ eTe).

Main question of Explainable Al:
Why has a neural network model made its prediction?.

Black box image source: https://www.kdnuggets.com/2015/04/model-interpretability-neural-networks-deep-learning.html
*Note: Linear models / decision trees are generally considered to be interpretable



Attribution maps: The most popular type of explanation

Attribution maps are one of the Similar approaches are also
most popular ways, especially in CV and NLP. popular in GNN explanations, too.

Computation graph
Input image to ResNet Result of GradCAM

GNN model

Highlights relevant

subgraph
Highlights
relevant pixels
Example: DTD [1], LRP [2], LIME [3], GradCAM [4], ... Example: GNNExplainer [5], PGExplainer [6], ...

[1] Montavon et al., “Explaining nonlinear classification decisions with deep Taylor decomposition”, Pattern Recognit. 65: 211-22 (2017)

[2] Bach et al., “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation”, PLOS ONE 10(7): e0130140.
[3] Riberiro et al, “"Why Should | Trust You?": Explaining the Predictions of Any Classifier”, KDD 2016

[4] Selvaraju et al., “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, ICCV 2017

[5]Ying et al., “GNNExplainer: Generating Explanations for Graph Neural Networks”, NeurlPS 2019

[6] Luo et al., “Parameterized explainer for graph neural network”, NeurlPS 2020



Part 2: Towards explainable graph learning with attention

Can we understand graph attention networks using attention?

28



What is attention?

A weighted sum operation where the weights are determined by the model

Qutput
Probabilities

The FBI is chasing a criminal on the run .

The FBI is chasing a criminal on the run .

The BBI is chasing a criminal on the run .
The FBI 8 chasing a criminal on the run .
The FBI is chasing a criminal on the run .
The FBI is chasing a
The FBI is chasing a
The FBI # chasing a criminal em therun.
a
a

Add & Norm

criminal on the run .

criminal on the run .

Add & Norm

Mutti-Head
The FBI is chasing criminal e the run. Fgrev?; 3 Attention Nix
The FBI is chasing criminal on the mn . 1
. . . . 1 Add & Norm
Figure 1: Illustration of our model while reading the N> Add & Norm e
sentence The FBI is chasing a criminal on the run. Mol Head Mult Head
Color red represents the current word being fixated, L ) L )
. . . . S L/
blue represents memories. Shading indicates the de- 5 ~ d
K R Positional o) Positional
gree of memory activation. Encoding @ Encoding
Input Output
Embedding Embedding
Long Short-Term Memory Networks Inputs Outputs
(L STMN) (shifted right)
(Cheng et al., EMNLP 2016) Transformer networks

(Vaswani et al., NeurlPS 2017)

Cheng et al., Long Short-Term Memory-Networks for Machine Reading, EMNLP 2016
Vaswani et al., Attention Is All You Need, NeurlPS 2017
Velickovic et al., Graph attention networks, ICLR 2018

‘o concat/avg
>( A
1
<\

Graph attention networks
(Velickovic et al., ICLR 2018)



Can we interpret attention = attribution?

When we think of the role of attention, we can naturally interpret as ‘where the model looks’
...which is essentially attribution maps! (at least intuitively)
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(Left) Bahdanau et al., Neural machine translation by jointly learning to align and translate, ICLR 2015
(Right) Caron et al., Emerging properties in self-supervised vision transformers, CVPR 2021



Can we just say attention = attribution?

Attention is heavily studied as an important candidate for model explanation

Is attention explanation?

Attention is not Explanation

Sarthak Jain Bvron C. Wallace
Northeastern University
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How to generate better
attention heatmaps in transformers?

Quantifying Attention Flow in Transformers
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So graph attention networks (GATSs) are explainable?

Well, the majority of the literature seems to overlook GATs as a valid candidate of ‘inherently explainable model’

Node-level tasks

GNN-XAI evaluation

20) BA-Community Tree-Grid

i 'ta\., NeUr\PS 20 GAT GCN MPNN GraphNets  GAT GCN MPNN GraphNets  GAT
. . (SancheZ-Lenge“ng e — 0.27 0.27 0.38 0.38 0.38 0.38

Just like Transformers, the model decides how o5t 05 o0s

0.49

SmoothGrad(GI) 0.51 0.51

much it should "attend” to neighboring nodes.

GradCAM-all

G --
IAttentlonWeights -- -- -- 0.5 -- -- -- 0.5 -- -- -- 0.49 |

“...have several blocks and attention heads, so for each component we take their average to
combine them to a scalar value assigned to each edge.”

GNNEXP‘&lner 019) Ground Truth B C ion graph i Grad Att Ground Truth

i S 2 N ' ‘
(Yingetal, NeurlP : e [ 2 wull, | s |
o °0 ! g . %A’wu‘y{ ! [ ° C} !

0 ey o o’o NO, group = fzt )¢ i 0o Q—O\go i : :

concat/avg

Representation 5 8 | g
for next layer ogrse, | 35 @ e,

“...itis not obvious which attention weights need to be used for edge importance, .... Each
edge’s importance is thus computed as the average attention weight across all layers.”

Explanation AUC
- iner 0.750 0.905 0,612 0717 0.783
h5 PGEXP‘a‘gg 2020) 0.730 0.824 0.007 0.074 0.765 |
eur - - - 0773 0.053
(Luo etal, N s K 0.836 0.943 0.875 0.742 0.727
PGExplainer 0.96310.011 __ 0.94510.019 __ 0.987+£0.007 __ 0.907£0.014 | 0.92610.021 __ 0.873+0.013
Tmprove 1% 13.0% 1% 37% 24.7% 115%
One layer of GAT
Inference Time (ms)
GNNExplainer 650,60 696.61 690.13 71340 934.72 309,98
PGExplainer 10.02 2407 636 6.72 30.13 9.68
Speed-up 59x 29x 108x 106x 12x 42x
(Left) Velickovic et al., Graph attention networks, ICLR 2018 “Each edge’s importance is obtained by averaging its attention weights across all

Sanchez-Lengeling et al., Evaluating attribution for graph neural networks, NeurlPS 2020 attention layers.”
Ying et al., GNNExplainer: Generating explanations for graph neural networks, NeurlPS 2019
Luo et al., Parameterized Explainer for Graph Neural Network, NeurlPS 2020



GATs are explainable... with a little bit of extra effort

We just need to consider the ‘flow’ of information better within the GAT model

“Computation tree”

Target node =0 Target node
3 . high

\. Layer?2

Attention Attention | "y
(layer 1) (layer 2)

L L E
Layer 1
.Iow

;P l > l » output QO0OO0OO0O0O0O00OOLO®OOO
Flow of

information

Proposed calculation (Shin et al., AAAI 2025)

doo = [1] + [3] x[2

4

“Importance of edge (6, O) 1. Add all occurances 2. Multiply other attention weights
when the target node is 0” in the computation tree along the flow of information

Shin et al., “Faithful and Accurate Self-Attention Attribution for Message Passing Neural Networks via the Computation Tree Viewpoint”, AAAI 2025



And we can immediately get better attribution maps

Case study: Infection dataset (Faber et al., KDD 2021)

(“Correct explanation”)

Input graph Previ . culat
put grap Ground-truth explanation revious naive calculations Ours (GALtt)
O O o
B O
O 0O 0o O
. o
© o
O @ o
@ Target node —— Infection path O_IO 0y od oe ﬁo

‘Note: We do not change the GAT model. Remember, our contribution is how to calculate attribution maps after the training is complete

Faber et al., “When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods”, KDD 2021



Takeaways

Part 1: A practical introduction to graphs and graph neural networks

1.  Understanding of graphs as a general data type
* Nodes & Edges (“connections”)
Aot of things can be represented as a graph, including images!

2. Understanding of the general framework of graph neural networks (GNNs)
« Message-passing = GNN (Unless it’'s a graph transformer)
 Aggregation + Transformation

Part 2: Towards explainable graph learning with attention

1. Understanding the basic concepts of explainable Al
* Attribution maps = “Important parts of the input”
« Alot of GNN explanations are also attribution maps
2. Answer to the question: Can we understand graph attention networks
using attention?
 (Shin et al.,, AAAI 2025) Conclusion: YES, but with a little bit of effort
« BTW, this conclusion is applicable to other GNNs with self-attention



Thank you!

Please feel free to ask any questions :)
Jjordan/186.github.io
Jjordan3414@yonsei.ac.kr
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