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Abstract

The self-attention mechanism has been adopted
in several widely-used message-passing neural
networks (MPNNs) (e.g., GATs), which adap-
tively controls the amount of information that
flows along the edges of the underlying graph.
This usage of attention has made such models
a baseline for studies on explainable AI (XAI)
since interpretations via attention have been popu-
larized in various domains (e.g., natural language
processing and computer vision). However, ex-
isting studies often use naı̈ve calculations to de-
rive attribution scores from attention, and do not
take the precise and careful calculation of edge
attribution into consideration. In our study, we
aim to fill the gap between the widespread us-
age of attention-enabled MPNNs and their po-
tential in largely under-explored explainability, a
topic that has been actively investigated in other
areas. To this end, as the first attempt, we for-
malize the problem of edge attribution from at-
tention weights in GNNs. Then, we propose
GATT, an edge attribution calculation method
built upon the computation tree. Through com-
prehensive experiments, we demonstrate the ef-
fectiveness of our proposed method when evaluat-
ing attributions from GATs. Conversely, we em-
pirically validate that simply averaging attention
weights over graph attention layers is insufficient
to interpret the GAT model’s behavior. Code is
publicly available at https://github.com/
jordan7186/GAtt/tree/main.
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1. Introduction
1.1. Background

In graph learning, graph neural networks (GNNs) (Wu et al.,
2021) have been used as the de facto architecture, since they
can effectively encode the graph structure along with the
node (or edge) features. Among various GNNs (Kipf &
Welling, 2017; Hamilton et al., 2017; Xu et al., 2019), sev-
eral models have successfully incorporated the self-attention
mechanism (Bahdanau et al., 2015; Vaswani et al., 2017)
into the message passing neural networks (MPNNs) (Gilmer
et al., 2017; Bronstein et al., 2021), e.g., GAT (Velickovic
et al., 2018). Such architectures have effectively allowed to
adaptively weigh the incoming information during message
passing.

Despite their widespread usage, GNNs, similarly as in many
other neural networks, are considered as black-box models
that lack interpretability. To shed light on the inner workings
of such GNNs, a large number of studies have focused on de-
veloping new post-hoc explainability methods, i.e., methods
that are applied after the underlying GNN model completed
its training (Li et al., 2022; Yuan et al., 2023). However,
such approaches typically necessitate an optimization frame-
work, making the explanation performance dependent on
various hyperparameters (e.g., number of iterations and ran-
dom seeds). Such post-hoc explanations are also known to
be sub-optimal since they essentially perform a single-step
projection to an information-controlled space (Miao et al.,
2022). This motivates us to explore an exciting opportu-
nity for GNNs that produces attention weights (dubbed Att-
GNNs), as it would be beneficial to introduce a new method
that directly utilizes the attention weights for explanation
without any additional optimization/learning frameworks
and hyperparameters. Furthermore, attention itself is also
viewed as a direct way of providing model interpretations
without a separate post-hoc explanation method (Lee et al.,
2017; Ghaeini et al., 2018; Hao et al., 2021). This viewpoint
has already been extensively performed on transformers, the
representative model architecture employing attention (Bah-
danau et al., 2015; Xu et al., 2015; Vig, 2019; Dosovitskiy
et al., 2021; Caron et al., 2021). Also, there has been a
significant body of research debating the effectiveness of
attention as explanation, particularly within the domain of
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Figure 1: A visualization of two different edge attribution
methods given the attention weights in a GAT model, a
representative GNN architecture with self-attention, trained
on the Infection dataset. Contrast to simply averaging over
graph attention layers, our proposed method, GATT, is built
upon the computation tree, and reveals that the GAT model
focuses mostly on the edges included in the ground truth
explanation (blue edges in the input graph).

natural language processing (NLP) (Jain & Wallace, 2019;
Wiegreffe & Pinter, 2019; Bibal et al., 2022).

1.2. Motivation

In contrast to other domains and architectures, the explo-
ration of the attention weight’s potential as explanation has
been largely overlooked outside transformer architectures.
While a few studies incorporated GATs as a baseline in their
evaluations (Ying et al., 2019; Luo et al., 2020; Sánchez-
Lengeling et al., 2020), they used attention as edge attribu-
tion (i.e., highlighting relevant edges of the input graph) by
simply averaging the attention weights over different layers,
the precise computation of edge attribution from attention
warrants a more intricate methodology.

Our study seeks to formulate post-processing for attention
weights in Att-GNNs, enabling to extract higher-quality
edge attributions that can better capture the essence of Att-
GNNs.1 While analogous investigations have been con-

1As mentioned, although graph transformers (Ying et al., 2021;
Kreuzer et al., 2021; Chen et al., 2023) also heavily utilize attention,
we focus on Att-GNNs in this study due to their widespread usage
as well as their message passing-based architecture.

ducted in the context of transformers (Abnar & Zuidema,
2020; Chefer et al., 2021b;a), to the best of our knowledge,
we are the first to address this issue within the domain of
Att-GNNs (i.e., MPNNs using attention).

1.3. Main Contributions

In this study, we tackle the intricate challenge of attributing
edges using attention weights in Att-GNNs by dissecting
the Att-GNNs feed-forward process, while taking into ac-
count the model’s underlying computation tree. Drawing
insights from this analysis, we assert that the edge attribu-
tion function to be designed should encompass two crucial
dimensions: 1) proximity to the target node and 2) its posi-
tion in the computation tree, thus aligning with the intrinsic
feed-forward process.

To this end, we introduce GATT, which adds attention
weights across the computation tree while adjusting their
influence by employing targeted multiplication factors for
attention weights guiding towards the target node. When
using a GAT model as a representative GNN architecture,
we run extensive experiments by answering pivotal facets of
interpretation—faithfulness and explanation accuracy—of
the underlying GAT across diverse real-world and synthetic
datasets. Empirical results demonstrate that the integration
of GATT to process attention weights yields substantively
enhanced explanations, excelling in both faithfulness and
explanation accuracy. As an example, Figure 1 visualizes
attribution scores from different edge attribution methods
using the same GAT model. The attribution scores from
GATT (see red box) imply that the GAT model places high
emphasis on the edges included in the ground truth expla-
nation. Such conclusion could not have been reached if we
were to use simple averaging as the tool for interpretation,
validating the superiority of our method. Finally, we also
perform an ablation study where we introduce two variants
of GATT, namely GATTSIM and GATTAVG, where we each
remove one critical design element of our method. Our
analysis shows that although the variants still outperforms
naı̈ve layer-wise averaging, it deteriorates the quality of the
attribution in all measures. In summary, we conclude that
Att-GNNs such as GAT are indeed highly explainable
when adopting the proper interpretation, i.e., proper ad-
justment of attention weights by taking the computation
tree viewpoint. Note that, although the principles of GATT
is generally applicable to all Att-GNNs, we focus on the
original GAT model in our study due to its widespread us-
age and significance in the literature. Our contributions are
summarized as follows:

• Key observations: We make key observations and
design principles that need to be considered in the edge
attribution calculation by integrating the computation
tree of the target node during its calculation.
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• Novel methodology: We propose GATT, a new
method to calculate edge attribution from attention
weights in a Att-GNNs by integrating the computation
tree of the given GNN model.

• Extensive evaluations: We extensively demonstrate
that the GAT model is shown to be more faithful and
accurate when using our proposed method compared
to the simple alternative.

2. Related Work
In this section, we discuss relevant prior studies in two major
themes. Specifically, we first address previous attempts to
use attention weights as interpretations in other domains,
and then we provide an overview of explainable AI (XAI).

2.1. Interpreting Models with Attention

Attention weights have been used as a useful tool to visual-
ize the inner workings of the underlying model (Bahdanau
et al., 2015; Xu et al., 2015; Vig, 2019; Dosovitskiy et al.,
2021; Caron et al., 2021), and there have been multiple
studies that systematically questioned the utility of attention
as interpretation in NLP (Bibal et al., 2022). In (Jain &
Wallace, 2019), attention was found to have low correla-
tions to other importance measures. However, (Wiegreffe &
Pinter, 2019) pointed out an unfair setting in the prior work,
and argued that attention can still be an effective explana-
tion. Furthermore, there have been studies that focused on
post-processing attention in transformers for token attribu-
tion. (Abnar & Zuidema, 2020) proposed attention rollout
and attention flow, and follow-up attempts (Chefer et al.,
2021a;b) were built upon attention rollout by incorporating
other attribution methods or attention gradients. Although
our study lies in a similar objective, our focus is on graph
data with the Att-GNN architecture, which has been largly
under-explored in the literature.

2.2. Explainability in GNNs

The primary goal of XAI is to provide a comprehensible un-
derstanding of neural network models’ decisions. In recent
years, various studies have developed methods to explain
GNN models. As one of the pioneering work, GNNEx-
plainer (Ying et al., 2019) identified a subset of edges and
node features around the target node that affect the underly-
ing model’s decision. PGExplainer (Luo et al., 2020) trained
a separate parameterized mask predictor to generate edge
masks that identify important edges. Although explanations
of GNN models are still an active research area (Li et al.,
2022; Yuan et al., 2023), most studies overlooked Att-GNN
as an inherently explainable model. Several attempts (Ying
et al., 2019; Luo et al., 2020; Sánchez-Lengeling et al., 2020)
introduced GATs, a representitative model in Att-GNNs, as

a baseline by averaging attention over layers. In light of
this, our study aims to scrutinize attention as a paramount
candidate for explaining Att-GNNs.

3. Edge Attribution Calculation in Att-GNNs
In this section, we first describe our notations used in the
paper. Then, we formalize the problem of calculating the
edge attribution in Att-GNNs, and then propose GATT, an
approach for incorporating the computation tree to compute
edge attributions.

3.1. Notations

Let us denote a given (undirected) graph as a tuple of two
sets G = (V, E), where V is the set of nodes and E is the
set of edges. We denote the edge connecting two nodes
vi, vj ∈ V as eij ∈ E . For the undirected G, ej,i ∈ E if
ei,j ∈ E and vice versa. We also denote the set of neighbors
of node vi as Ni.

3.2. Problem Statement

We are given a graph G = (V, E), the Att-GNN model f
with L layers and a target node vi ∈ V of interest. The
attention weights calculated from f are denoted as A =
{A(l)}Ll=1, where A(l) ∈ R|V|×|V| and [A(l)]j,i = αl

i,j

is the attention weight of edge ei,j in the l-th layer (l = 1
being the input layer). The problem of edge attribution
calculation is characterized by an edge attribution function
Φ(v,A, ei,j) ≜ ϕv

i,j such that the edge attribution score
ϕv
i,j accounts for the importance of edge ei,j to the model’s

calculation for node v (i.e., faithfulness of f ).

In our study, we design Φ using the computation tree in
Att-GNNs alongside several observations and key design
principles, which will be specified later. To design such
a function Φ, we argue that the computation tree of Att-
GNNs should be considered, and incorporating its several
key properties. Note that most post-hoc instance-level ex-
planation methods for GNNs (Ying et al., 2019; Luo et al.,
2020) also have a similar objective in terms of calculating
ϕv
i,j , but they do not leverage the attention weights A. Ad-

ditionally, we mainly consider GATs as the representative
Att-GNN model in our study, but our methodology can be
generally applied to other Att-GNN models. We will focus
on the original GAT model (Velickovic et al., 2018) as a
default from now on.

3.3. From Attention to Attribution

We first visualize the computation tree in a GAT, which
will lead to several observations to guide GATT, an edge
attribution calculation method given the attention weights
in the GAT model.
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Figure 2: A visualization for a 2-layer GAT on node 27
on the infection dataset. Figure 2(a) shows the local 2-hop
subgraph with the edge e40,27 marked as red. Figure 2(b)
shows the computation tree in the GAT, where the informa-
tion flows from leaf nodes to node 27 at the root. The edges
are colored by the attention weights from the model, while
highlighting the two occurrences of edge e40,27.

3.3.1. VISUALIZING THE COMPUTATION TREE

To provide an illustrative example, we train a 2-layer GAT
model (Velickovic et al., 2018) with a single attention head
on the synthetic infection benchmark dataset (Faber et al.,
2021). Figure 2(a) shows the 2-hop subgraph from target
node 27, which contains all nodes and edges that the GAT
model utilizes from node 27’s point of view. The compu-
tation tree in the GAT is commonly expressed as a rooted
subtree (Sato et al., 2021), which is shown in Figure 2(b) for
node 27. In the figure, the information flows from leaf nodes
at depth 2 to the root node 27 at depth 0, which exhibits a
different structure from that of the subgraph in Figure 2(a).
Since each graph attention layer calculates attention weights
for each edge in E , we color-code those weights in the
computation tree (note that self-attention always includes
self-loops regardless of the original graph structure).

3.3.2. OBSERVATIONS AND DESIGN PRINCIPLES

We make several observations from the computation tree:

(O1) Identical edges can appear multiple times in the com-
putation tree. For example, edge e40,27 in Figure 2(a)
appears twice in Figure 2(b).

(O2) Nodes do not appear uniformly in the computation
tree. Specifically, nodes that are k-hops away from
the target node do not exist in depth k′ for 0 < k′ < k
(e.g., node 70 appears only at depth 2 while node 40
appears three times).

(O3) The graph attention layer always includes self-loops
during its feed-forward process.

Based on the above observations, we would like to state two
design principles that must be reflected when building the
edge attribution function Φ.

(P1) Proximity effect: Edges within closer proximity to the
target node tend to highly impact the model’s predic-
tion compared with faraway edges, since they tend to
appear more frequently in the computation tree.

(P2) Contribution adjustment: The contribution of an edge
in the computation tree should be adjusted by its
position. (i.e., depth in the tree)

By these standards, we look again at the attention weights
in Figure 2(b). We first see that edges close to the target
node such as e40,27 appear twice, whereas distant edges
such as e70,40 appear only once (P1). Additionally, for the
attention weights from the last graph attention layer (i.e.,
edges connecting nodes at depth 1 to the root node), each
edge tends to have roughly the value of 0.25 for the attention
weights. In consequence, the information flowing from the
first graph attention layer (i.e., edges connecting leaf nodes
to nodes at depth 1) will be diminished by 0.25 as it reaches
the root node (P2).

3.3.3. PROPOSED METHOD

To design the edge attribution function Φ, we start by for-
mally defining the computation tree alongside flow and at-
tention flow.

Definition 3.1 (Computation tree). The computation tree
for an L-layer GAT in our study is defined to as a rooted
subtree of height L with the root (target) node. For each
node in the tree at depth d, the neighboring nodes are at
depth d+ 1 with edges directed towards node v.

According to Definition 3.1, we define the concept of flows.

Definition 3.2 (Flow in a computation tree). Given a com-
putation tree as a rooted subtree of height L with the root
(target) node v, we define a flow λl

i,j,v as the list of edges
that sequentially appear in a path of length l starting from
a given edge ei,j within the computation tree and ending
with some edge e∗,v.2 We indicate the k-th position within
the flow as λl

i,j,v(k) for k ∈ [1, L]. We denote the set of
all flows in the computation tree with node v at its root that
starts from edge ei,j with length m ∈ [1, L] as Λm

v (ei,j).

From Definition 3.2, it follows that λl
i,j,v(1) = ei,j and

λl
i,j,v(l) = e∗,v for all flows in Λv(ei,j).

Definition 3.3 (Attention flow in a computation tree). Given
a flow λm

v0,v1,w = [ev0,v1 , · · · , e∗,w] of length m ≤ L for an
L-layer GAT model, we define an attention flow α[λm

v0,v1,w]
as the corresponding attention weights assigned to each edge

2As stated in (O1), nodes/edges are not unique in the compu-
tation tree. Nonetheless, we will use the node indices from the
original graph and avoid differentiating them in the computation
tree as long as it does not cause any confusion.
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by the associated graph attention layers:

α[λm
v0,v1,w] = [αL−m+1

v0,v1
, · · · , αL

∗,w]. (1)

Then, it follows that α[λm
v0,v1,w](i) = αL−m+i

vi−1,vi .
Example 1. In Figure 2(b), Λ27(e40,27) includes two flows,
i.e., λ1

40,27,27 = [e40,27] and λ2
40,27,27 = [e40,27, e27,27],

along with the corresponding attention flows α[λ1
40,27,27] =

[0.25] and α[λ2
40,27,27] = [0.9, 0.25], respectively.

Finally, we are ready to present GATT.

Definition 3.4 (GATT). Given a target node v, an edge ei,j
of interest, the set of flows, Λv(ei,j), and the attention flows
for all flows in Λv(ei,j), we define the edge attribution of
ei,j in L-layer GATs as

ϕv
i,j =

L∑
m′=1

∑
λm′
i,j,v∈Λm′

v (ei,j)

C(α[λm′

i,j,v])α[λ
m′

i,j,v](1), (2)

where C(α[λm
i,j,v]) =

∏
2≤k≤m α[λm

i,j,v](k) (or 1 if m =
1). Equation (2) can be interpreted as follows. We first find
all occurrences of the target edge ei,j in the computation
tree, and then re-weight its attention score (i.e., α[λm

i,j,v](1))
by the product of all attention weights that appear after
ei,j (i.e., α[λm

i,j,v](k) for k ≥ 2) in the flow before the
summation over all relevant flows. Next, let us turn to
addressing how our design principles (P1) and (P2) are met.
First, (P1) holds as we add the contributions from each flow
rather than taking the average, as this will offset the total
number of occurrences of ei,j in the computation tree. Next,
(P2) is fulfilled by the adjustment factor from C(α[λm

i,j,v]),
since its value is dependent on the position of λm

i,j,v(1).
Essentially, C(α[λm

i,j,v]) takes the chain of calculation from
an edge to the target node into account. We provide an
insightful example below.
Example 2. Let us recall λ2

40,27,27 = [e40,27, e27,27] and
its attention flow α[λ2

40,27,27] = [0.9, 0.25] on node 27
from Example 1. At face value, the contribution of edge
e40,27 within the flow λ2

40,27,27 should be 0.9. However,
this is inappropriate since the information will eventually
get muted significantly by α2

27,27 = 0.25; thus, we need to
consider C(α[λ2

40,27,27]) before calculating the final edge
attribution. From Definition 3.4, the edge attribution ϕ27

40,27

from the attention weights is calculated as:

ϕ27
40,27 = 1× 0.25 + 0.25× 0.9 = 0.475. (3)

3.4. Practical Calculation of GATT

Although GATT is defined by Equation (2), directly using
this to compute the edge attribution ϕv

i,j is not desirable
since it involves constructing the computation tree in the
form of a rooted subtree for each node v, as well as com-
puting over all relevant attention flows, resulting in high

redundancy during computation and not being proper for
batch computation. To overcome these challenges, we in-
troduce a matrix-based computation method that is much
preferred in practice.

We first define

CL(k) =

{
I, if k = 0,

A(L)A(L− 1) · · ·A(L− k + 1), otherwise.

Then, we would like to establish the following proposition.

Proposition 3.5. For a given set of attention weights
A = {A(l)}Ll=1 for an L-layer GAT with L ≥ 1, GATT
in Definition 3.4 is equivalent to

ϕv
i,j =

L∑
m=1

[CL(L−m)]v,j [A(m)]j,i. (4)

Proposition 3.5 signifies that GATT sums the attention
scores, weighted by the sum of the products of attention
weights [A(m)]j,i along the paths from node j to node v,
over all graph attention layers.

3.5. Complexity Analysis

We first analyse the computational complexity of GATT.
According to Equation (4), the bottleneck for calculating
ϕv
i,j is to acquire

∏L
k=m+1 A(k). However, this matrix can

be pre-computed and does not require re-calculation after
its initial acquirement. Since we only count the number of
multiplications in the summation, the computation complex-
ity is O(L), which is extremely efficient. Next, according
to Equation (4), the memory complexity requires analyzing
CL(L−m) and A(m). For an L-layer GAT, while storing
all attention weights in A(m) requires O(L|E|), CL(L−m)
requires at most O(L||TL−1||0), where T denotes the adja-
cency matrix, and || · ||0 is the 0-norm. In conclusion, the
total memory complexity is O(L||TL−1||0 + L|E|).

4. Can Attention Interpret Att-GNNs?
In this section, we carry out empirical studies to validate the
effectiveness of GATT, the proposed method interpreting a
given GAT model.

4.1. Is Attention Faithful to the Model?

We focus primarily on one of the most important properties
in evaluating an explanation method: faithfulness, which
indicates how closely it truly reflects the underlying model’s
inner workings (Jacovi & Goldberg, 2020; Chrysostomou &
Aletras, 2021; Liu et al., 2022; Li et al., 2022). Measuring
the faithfulness involves 1) manipulating the input (such
as masking a part of the input) according to the attribution
suggested by the explanation method and 2) observing the
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Table 1: Experimental results with respect to the faithfulness for GATT, AVGATT, and random attribution on four real-world
datasets. Results for 2-layer and 3-layer GATs are shown for each case. The best performer is highlighted as bold.

Dataset Measure Metric 2-layer GAT 3-layer GAT

GATT AVGATT Random GATT AVGATT Random

Cora

∆PC

ρPearson (↑) 0.8468 0.1764 -0.0056 0.8642 0.0967 0.0045
τKendall (↑) 0.7051 -0.1826 0.0082 0.6512 -0.0537 -0.0025
ρSpearman (↑) 0.6516 -0.1240 0.0061 0.5679 -0.0379 -0.0018

∆NE

ρPearson (↑) 0.7112 0.1526 -0.0076 0.7690 0.0859 0.0040
τKendall (↑) 0.7948 -0.2463 0.0060 0.7616 -0.0820 0.0007
ρSpearman (↑) 0.7371 -0.1736 0.0044 0.6737 -0.0580 0.0005

∆P AUROC (↑) 0.9755 0.7251 0.4389 0.9875 0.7075 0.5235

Citeseer

∆PC

ρPearson (↑) 0.8516 0.3096 0.0012 0.8711 0.2110 -0.0073
τKendall (↑) 0.7584 -0.0106 0.0041 0.6456 -0.0130 0.0021
ρSpearman (↑) 0.8321 -0.0187 0.0057 0.7318 -0.0191 0.0031

∆NE

ρPearson (↑) 0.7653 0.2780 0.0021 0.8291 0.2006 -0.0058
τKendall (↑) 0.8469 -0.0312 -0.0003 0.7235 -0.0263 0.0023
ρSpearman (↑) 0.9206 -0.0517 -0.0004 0.8204 -0.0376 0.0032

∆P AUROC (↑) 0.9846 0.9213 0.3695 0.9920 0.8979 0.4039

Pubmed

∆PC

ρPearson (↑) 0.8812 0.1648 -0.0064 0.8489 0.0592 0.0009
τKendall (↑) 0.6268 -0.0797 0.0002 0.5349 -0.0964 -0.0003
ρSpearman (↑) 0.6746 -0.1097 -0.0003 0.5946 -0.1348 -0.0004

∆NE

ρPearson (↑) 0.8201 0.1477 -0.0068 0.8612 0.0600 0.0015
τKendall (↑) 0.7031 -0.0823 0.0025 0.5378 -0.1138 -0.0004
ρSpearman (↑) 0.7568 -0.1133 0.0033 0.6187 -0.1628 -0.0006

∆P AUROC (↑) 0.9915 0.8834 0.3974 0.9993 0.8932 0.5172

OGB-Arxiv

∆PC

ρPearson (↑) 0.7790 0.0794 0.0007 0.7721 0.0465 -0.0004
τKendall (↑) 0.2047 0.0128 0.0009 0.1327 -0.0158 -0.0041
ρSpearman (↑) 0.2590 0.0187 0.0013 0.1778 -0.0246 -0.0061

∆NE

ρPearson (↑) 0.8287 0.0804 0.0016 0.8282 0.0478 -0.0017
τKendall (↑) 0.2619 0.0053 -0.0010 0.1557 -0.0086 -0.0038
ρSpearman (↑) 0.3275 -0.0066 -0.0015 0.2106 -0.0142 -0.0056

∆P AUROC (↑) 0.9908 0.8470 0.4962 0.9985 0.8331 0.5004

change of the model’s response. We specify our experiment
settings below.

4.1.1. ATTENTION ERASURE

To quantitatively analyze the importance of edge ei,j , we
mask the attention coefficients (i.e.,, attention weights be-
fore softmax) corresponding to edge ei,j with zeros in the
computation tree, which is compared with the original re-
sponse of the GAT model (Tomsett et al., 2020). Due to the
fact that removing ei,j instead of erasing attention weights
causes the whole attention distribution to change, we re-
frain from edge masking in our study. Moreover, we do
not mask the attention weights after softmax, which never
happens in a normal feed-forward procedure of GATs and
makes the attention distribution not properly normalized. In
other words, we only remove attention coefficients from one
edge at a time to prevent the model from out-of-distribution
computation, a common pitfall for perturbation-based ap-
proaches (Hooker et al., 2019; Hase et al., 2021).

4.1.2. DATASETS

In this experiment, we use four citation datasets, Cora, Cite-
seer, Pubmed (Yang et al., 2016), and a large-scale dataset,
OGB-Arxiv (Hu et al., 2020), for node classification. They
are real-world benchmark datasets where nodes correspond
to papers and edges represent citations between papers. The
nodes are labeled according to their topics.

4.1.3. BASELINE METHODS

We compare the proposed GATT against another attention-
based explanation method (Ying et al., 2019; Luo et al.,
2020; Sánchez-Lengeling et al., 2020), named as AVGATT,
which attributes each edge as the average of the attention
weights over different layers and attention heads. As another
baseline, we additionally include random attribution, called
‘Random’, by randomly assigning scores between [0, 1] to
each edge.
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4.1.4. MEASUREMENT OF GAT

Denoting the output probability vector of the GAT for node
v as pv and the output probability vector after the atten-
tion erasure for ei,j as pv\ei,j , we measure the model’s
behavior from three points of view: 1) decline in pre-
diction confidence ∆PC (Guo et al., 2017) defined as the
decrease of the probability for the predicted label (i.e.,
∆PC = pv[i] − pv\ei,j [i], where i = argmaxi pv[i]), 2)
change in negative entropy ∆NE (Moon et al., 2020) defined
as the increase of ‘smoothness’ of the probability vector (i.e.,
∆NE = −

∑
pv\ei,j logpv\ei,j +

∑
pv logpv), which also

reflects the model’s confidence, and 3) change in prediction
∆P, which measures the difference between argmaxi pv[i]
and argmaxi pv\ei,j [i], where pv[i] is the i-th entry of pv .

4.1.5. QUANTITATIVE ANALYSIS WITH ERASURE

We investigate the relationship between the attribution
scores acquired from attention erasure and edge attribution
calculation methods. In each dataset, we randomly select
100 nodes as target nodes v and calculate GATT values for
all edges (i, j) that affect the target node (i.e., ϕv

i,j). We also
perform attention erasure for the same edges (i, j) and mea-
sure ∆PC, ∆NE, and ∆P to observe the correlation between
GATT values. Specifically, for ∆PC and ∆NE, we adopt
three metrics: Pearson’s rho ρPearson, Kendall’s tau τKendall,
and Spearman’s rho ρSpearman. For ∆P, we use the area un-
der receiver operating characteristic (AUROC), basically
assessing the quality of an attribution score as a predictor of
whether the prediction of the target node will change after
attention erasure.

Table 1 summarizes the experimental results with respect
to the faithfulness on the four real-world citation datasets,
using 2-layer and 3-layer trained GATs with a single atten-
tion head for each dataset. The results strongly indicate
using GATT reflects the behavior of the GAT model much
better than AVGATT, resulting in a drastic increase in ex-
plainability performance compared to AVGATT and random
attribution. Although AVGATT shows modest performance
in ∆P, it performs poorly in terms of changes in confidence
(i.e., ∆PC and ∆NE), sometimes performing worse than ran-
dom attribution. This is because AVGATT does not account
for the proximity effect and contribution adjustment, and
rather naı̈vely averages the attention weights over different
layers with no context of the computation tree.

Additionally, we consider the effect of multi-head attention,
which allows each attention head to potentially capture dif-
ferent patterns in GATs. To this end, we carry out an experi-
ment while increasing the number of attention heads from
1 to 8. Table 2 summarizes the performance of edge attri-
bution calculation methods according to different attention
head configurations. We find that the trend in performance
is largely consistent with our findings in Table 1 even with

Table 2: Experimental results with respect to the faithfulness
by increasing the number of attention heads from 1 to 8 for
2 and 3-layer GAT models. The table shows the case for the
Cora dataset, measuring ∆PC with ρSpearman.

Model Method Number of heads

1 2 4 8

2-layer
GATT 0.8477 0.8625 0.8468 0.8496
AVGATT 0.1768 0.1807 0.1697 0.1728
Random -0.0079 0.0031 0.0021 0.0073

3-layer
GATT 0.8624 0.8857 0.8674 0.7048
AVGATT 0.0966 0.0965 0.0994 0.0857
Random 0.0092 -0.0011 0.0001 -0.0033

an increased number of attention heads. However, we find
no distinguishable pattern with respect to the number of
heads in both 2-layer and 3-layer GATs for the Cora dataset;
nonetheless, this is not necessarily the case for other two
datasets.

4.2. Does Attention Reveal Accurate Explanations?

We evaluate the edge attributions of the GAT model in com-
parison with ground truth explanations. Since only the
synthetic datasets are equipped with proper ground truth
explanations, we only use these datasets during evaluation.

4.2.1. DATASETS

We use the BA-shapes and Infection synthetic benchmark
datasets, which also includes ground truth explanations. BA-
shapes (Ying et al., 2019) attaches 80 house-shaped motifs
to a base graph made from the Barabási-Albert model with
300 nodes, where the edges included in the motif is set as the
ground-truth explanation. Infection benchmark (Faber et al.,
2021) generates a backbone graph from the Erdös-Rényi
model. Then, a small portion of the nodes are assigned as
‘infected’, and the ground-truth explanation is the path from
an infected node to the target node. We expect that edge
attributions should highlight such ground truth explanations
for the underlying GAT with high performance.

4.2.2. BASELINE METHODS

In this experiment, we mainly compare the performance
among attention-based edge attribution calculation meth-
ods (i.e., GATT and AVGATT) including random attribution.
Additionally, we consider seven popular post-hoc explana-
tion methods: Saliency (Simonyan et al., 2014), Guided
Backpropagation (Springenberg et al., 2015), Integrated
Gradient (Sundararajan et al., 2017), GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020), Graph-
Mask (Schlichtkrull et al., 2021), and FastDnX (Pereira
et al., 2023). We emphasize that post-hoc explanation meth-
ods are treated as a complementary category of inherent
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Table 3: Experimental results on the explanation accuracy
for the synthetic datasets using 3-layer GATs, measured in
terms of the AUROC. The results for directly using attention
weights as explanation are colored in gray. The best and
runner up performances are marked as bold and underline,
respectively.

Expl. type Method BA-Shapes Infection

GATT 0.9591 0.9976Attention AVGATT 0.7977 0.8786

- Random 0.4975 0.4811

Post-hoc

Saliency 0.9563 0.8237
Guided Backprop 0.6231 0.8949
Integrated Gradient 0.6231 0.9472
GNNExplainer 0.8912 0.9272
PGExplainer 0.8289 0.7173
GraphMask 0.5316 0.6859
FastDnX 0.9917 0.6574

explanations, thus belonging to a different category (Du
et al., 2020). However, we include them for a more compre-
hensive comparison.

4.2.3. MEASUREMENT

As in prior studies (Ying et al., 2019; Luo et al., 2020), we
treat evaluation as binary classification of edges, aiming to
predict whether each edge belongs to ground truth explana-
tions by using the attribution scores as probability values.
In this context, we adopt the AUROC as our metric.

4.2.4. EXPERIMENTAL RESULTS

Table 3 summarizes the results on the explanation accuracy
for two synthetic datasets with ground truth explanations.
For both datasets, we observe that GATT is superior to
AVGATT. Even compared to the representative post-hoc
explanation methods, GATT performs surprisingly better.
This indicates that the attention weights can inherently cap-
ture the GAT model’s behavior without external post-hoc
explanation methods.

4.3. Ablation Study

The definition of GATT by Definition 3.4 satisfies the two
design principles (i.e., proximity effect (P1) and contribu-
tion adjustment (P2)). We now perform an ablation study
to validate the effectiveness of the contribution adjustment
principle. To this end, we devise two variants GATTSIM and
GATTAVG, simply adding all attention weights uniformly
corresponding to the target edge in the computation tree
and replacing the weighted summation in Equation (2) with
averaging to remove the effects of the proximity effect, re-
spectively. Specifically, GATTSIM and GATTAVG are defined

Table 4: Properties of different edge attribution calculation
methods.

Method GATT GATTSIM GATTAVG AVGATT

(P1) Proximity effect ✓ ✓ ✗ ✗
(P2) Contribution adjustment ✓ ✗ ✓ ✗

Table 5: Properties of different edge attribution calculation
methods.

Dataset Model GATT GATTSIM GATTAVG AVGATT

Cora 2-layer 0.7793 0.7565 0.7650 0.0461
3-layer 0.7598 0.6603 0.6940 0.0954

Citeseer 2-layer 0.8514 0.8295 0.7317 0.1995
3-layer 0.8019 0.7210 0.7890 0.1734

Pubmed 2-layer 0.7792 0.7413 0.6796 0.1158
3-layer 0.7136 0.5727 0.7051 0.0721

as,

ϕv
i,j =

L∑
m′=1

∑
λm′
i,j,v∈Λm′

v (ei,j)

α[λm′

i,j,v](1), (5)

ϕv
i,j =

1

|Λv(ei,j)|

L∑
m′=1

∑
λm′
i,j,v∈Λm′

v (ei,j)

C(α[λm′

i,j,v])α[λ
m′

i,j,v](1),

(6)

respectively. The properties of different edge attribution
calculation methods are summarized in Table 4.

Evaluation of faithfulness. We compare the performance
among GATT, GATTSIM, GATTAVG, and AVGATT by run-
ning experiments with respect to the faithfulness on the
Cora, Citeseer, and Pubmed datasets. Table 5 summarizes
the performance of each method by averaging over all 7
measures and metrics (i.e., 3 correlation metrics for ∆PC
and ∆NE each and AUROC for ∆p). Comparing GATT and
its variants, we observe that GATT consistently outperforms
both GATTSIM and GATTAVG for all cases. In particular, the
performance degradation of the variants is generally more
severe for 3-layer GATs. This is because the effect of the
contribution adjustment (P2) and the cardinality of Λv(ei,j)
are more significant in 3-layer GATs since the length of each
attention flow are longer as well as the number of flows to
consider is much higher compared to 2-layer GATs.

Case study. We conduct case studies on the BA-Shapes
and Infection datasets for 2-layer GATs. In Figure 3, each
of two cases shows the target node (orange node) and the
ground truth explanations (blue edges). We aim to observe
how much the attribution scores from different methods
focus on the ground truth explanation edges. Indeed, for
both datasets, GATT focuses primarily on the ground truth
explanations, while the attribution scores from GATTSIM and
AVGATT tend to be more spread throughout the whole graph.
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2-hop subgraph

Target node Motif Backbone Ground truth explanation edges

(a) Node 679 on BA-Shapes.

2-hop subgraph

Target node Other nodes Ground truth explanation edges

(b) Node 2 on Infection.

Figure 3: Case study on the BA-Shapes and Infection datasets for a 2-layer GAT.

This indicates that the attention weights in GATs indeed
recognize the ground truth explanations. For GATTAVG, it
is likely that the attributions are not much different from
GATT in BA-Shapes. However, GATTAVG in the Infection
dataset attributes its attribution scores to a single self-loop
edge that does not belong to the ground truth explanations,
failing to provide adequate explanations. Interestingly, on
BA-Shapes, GATT tends to strongly emphasize local edges
even within the house-shaped motifs, which coincides with
the pitfall addressed in (Faber et al., 2021).

5. Conclusion and Future Work
In this study, we have investigated the largely under-
explored problem of interpreting Att-GNNs by utilizing
the attention weights. Although Att-GNNs were not re-
garded as a candidate as an inherently explainable model,
our empirical evaluations have demonstrated the affirmative
results when our proposed method, GATT, is used to calcu-
late edge attribution scores. Even though GATT is generally
applicable, this work does not include a systematic analysis
on how different designs of attention weights will interact
with GATT, which we leave as future work.

References
Abnar, S. and Zuidema, W. H. Quantifying attention flow in

transformers. In ACL, pp. 4190–4197, Online, Jul. 2020.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
ICLR, San Diego, CA, May 2015.

Bibal, A., Cardon, R., Alfter, D., Wilkens, R., Wang, X.,

François, T., and Watrin, P. Is attention explanation?
an introduction to the debate. In ACL, pp. 3889–3900,
Dublin, Ireland, May 2022.

Bronstein, M. M., Bruna, J., Cohen, T., and Velickovic,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges, 2021.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In ICCV, pp. 9630–
9640, Montreal, Canada, Oct. 2021.

Chefer, H., Gur, S., and Wolf, L. Transformer interpretabil-
ity beyond attention visualization. In CVPR, pp. 782–791,
virtual, Jun. 2021a.

Chefer, H., Gur, S., and Wolf, L. Generic attention-model
explainability for interpreting bi-modal and encoder-
decoder transformers. In ICCV, pp. 387–396, Montreal,
Canada, Oct. 2021b.

Chen, J., Gao, K., Li, G., and He, K. NAGphormer: A
tokenized graph transformer for node classification in
large graphs. In ICLR, May 2023.

Chrysostomou, G. and Aletras, N. Improving the faithful-
ness of attention-based explanations with task-specific
information for text classification. In ACL/IJCNLP, pp.
477–488, Virtual Event, Aug. 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, Virtual event, May 2021.

9



Revisiting Attention Weights as Interpretations of Message-Passing Neural Networks

Du, M., Liu, N., and Hu, X. Techniques for interpretable
machine learning. Commun. ACM, 63(1):68–77, 2020.

Faber, L., Moghaddam, A. K., and Wattenhofer, R. When
comparing to ground truth is wrong: On evaluating GNN
explanation methods. In KDD, pp. 332–341, Virtual
Event, Aug. 2021.

Ghaeini, R., Fern, X. Z., and Tadepalli, P. Interpreting
recurrent and attention-based neural models: a case study
on natural language inference. In EMNLP, pp. 4952–
4957, Brussels, Belgium, Nov. 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, pp. 1263–1272, Sydney, NSW, Aug. 2017.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In ICML, pp.
1321–1330, Sydney, Australia, Aug. 2017.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In NeurIPS, pp.
1024–1034, Long Beach, CA, Dec. 2017.

Hao, Y., Dong, L., Wei, F., and Xu, K. Self-attention attri-
bution: Interpreting information interactions inside trans-
former. In AAAI, pp. 12963–12971, Virtual event, Feb.
2021.

Hase, P., Xie, H., and Bansal, M. The out-of-distribution
problem in explainability and search methods for feature
importance explanations. In NeurIPS, pp. 3650–3666,
Virtual event, Dec. 2021.

Hooker, S., Erhan, D., Kindermans, P., and Kim, B. A
benchmark for interpretability methods in deep neural net-
works. In NeurIPS, pp. 9734–9745, Vancouver, Canada,
Dec. 2019.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In NeurIPS,
Virtual event, Dec. 2020.

Jacovi, A. and Goldberg, Y. Towards faithfully interpretable
NLP systems: How should we define and evaluate faith-
fulness? In ACL, pp. 4198–4205, Online, Jul. 2020.

Jain, S. and Wallace, B. C. Attention is not explanation.
In NAACL-HLT, pp. 3543–3556, Minneapolis, MN, Jun.
2019.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, Toulon,
France, Apr. 2017.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking graph transformers with spec-
tral attention. In NeurIPS, pp. 21618–21629, Virtual
event, Dec. 2021.

Lee, J., Shin, J., and Kim, J. Interactive visualization and
manipulation of attention-based neural machine transla-
tion. In EMNLP, pp. 121–126, Copenhagen, Denmark,
Sept. 2017.

Li, P., Yang, Y., Pagnucco, M., and Song, Y. Explainability
in graph neural networks: An experimental survey, 2022.

Liu, Y., Li, H., Guo, Y., Kong, C., Li, J., and Wang, S.
Rethinking attention-model explainability through faith-
fulness violation test. In ICML, pp. 13807–13824, Balti-
more, MD, Jul. 2022.

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. In NeurIPS, Virtual event, Dec. 2020.

Miao, S., Liu, M., and Li, P. Interpretable and generalizable
graph learning via stochastic attention mechanism. In
ICML, Baltimore, MD, Jul. 2022.

Moon, J., Kim, J., Shin, Y., and Hwang, S. Confidence-
aware learning for deep neural networks. In ICML, pp.
7034–7044, Vienna, Austria, Jul. 2020.

Pereira, T. A., Nascimento, E., Resck, L. E., Mesquita, D.,
and Souza, A. H. Distill n’ explain: explaining graph
neural networks using simple surrogates. In AISTATS,
Palau de Congressos, Spain, Apr. 2023.

Sánchez-Lengeling, B., Wei, J. N., Lee, B. K., Reif, E.,
Wang, P., Qian, W. W., McCloskey, K., Colwell, L. J.,
and Wiltschko, A. B. Evaluating attribution for graph
neural networks. In NeurIPS, virtual, Dec. 2020.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In SDM, pp. 333–341,
Virtual event, Apr.–May 2021.

Schlichtkrull, M. S., Cao, N. D., and Titov, I. Interpreting
graph neural networks for NLP with differentiable edge
masking. In ICLR, Virtual Event, May 2021.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. In ICLR, Banff, Canada, Apr.
2014.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. A. Striving for simplicity: The all convolu-
tional net. In ICLR, San Diego, CA, May 2015.

10



Revisiting Attention Weights as Interpretations of Message-Passing Neural Networks

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In ICML, Sydney, Australia, Aug.
2017.

Tomsett, R., Harborne, D., Chakraborty, S., Gurram, P., and
Preece2, A. Sanity checks for saliency metrics. In AAAI,
New York, NY, Feb. 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In NIPS, pp. 5998–6008, Long Beach,
CA, Dec. 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò,
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