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Research Problem

Prototype-Based Explanations for Graph Neural Networks

Explainable AI for graph neural networks (GNNs)

Explainable AI (XAI) is interested in explaining deep neural network
models, which can provide model-user trust and avoid ‘clever Hans’
predictions [1].

GNNs for graph classification

Proposed methodology: PAGE

Step 1: Acquisition of embeddings

Experimental evaluation

Discussion & Conclusion

Reference

Qualitative evaluation

Quantitative evaluation

Consistency Faithfulness
Dataset PAGE (Ours) XGNN [4] PAGE (Ours) XGNN [4]

BA-house 0.048 0.312 0.733 0.328
Solubility 0.109 0.348 0.591 0.085

• Consistency measures the robustness of explanations across
different GNN hyperparameters (the lower the better).

• Faithfulness measures the Kendall’s tau coefficient between the
performance of the GNN model and its explanation accuracy (the
higher the better).
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• In our work, we propose PAGE, a novel model-level explanation of a
GNN model that performs graph classification.

• In contrast to XGNN, which relies on reinforcement learning that
requires carefully designed reward functions along with domain
knowledge, our method discovers explanations within the dataset.

Step 2: Clustering on the embedding space

Step 3: Prototype discovery by calculating the MCS
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Problem formulation

In our study, we aim at designing a model-level explanation method of
GNNs for graph classification, which provides an abstract and concise
explanation by capturing what the model has learned from the training
data.
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Graph dataset

First, we acquire graph-level embeddings that are generated during the
feed-forward process of GNN.
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Second, we fit a Gaussian Mixture Model to find clusters on the
embedding space. The graph-level embedding vectors closest to each
centroid is then selected.

Extract

Inner product of node-level 
embeddings

As the final step, we extract the maximum common subgraph (MCS)
from the selected input graphs to acquire the most important subgraph
pattern based on NeuralMCS [2].

PAGE (Ours) XGNN [4] Ground-truth
explanation

BA-house

Solubility

We employ GCN [3] as the benchmark GNN model for our
experiments.

Explanation
(MCS)

Instance-level explanation Model-level explanation

GNN Class 1

Provides explanation for each
instance. Usually highlights
important subgraph or features
of the given instance.
Most XAI methods for GNN
models consider this approach.

XAI

. . .

Provides explanation by
describing the general behavior
of a model without referring to a
specific example.
Our work aims to design a XAI
method for GNNs by adopting
this approach.
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