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Model-level explanation

• Model-level explanations explain the decisions 
of a deep neural network model by finding the 
pattern that leads to a specific decision.

• Previous instance-level explanations are not fit 
for such type of explanations, often requiring 
aggregating explanations or large-scale case-by-
base analysis.
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Model-level explanations of graph neural networks (GNNs)

Explanations for GNNs have mostly focused on 
instance-level explanation

We propose PAGE, a model-level explanation 
method for graph classification GNN models.
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Phase 1 (Section 4.1)
Selection of input graphs Phase 2 (Section 4.2) Discovery of the prototype graph

Clustering of graph-level 
embeddings
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embeddings
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Prototype retrieval
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. . .

Retrieval of the 
final prototype set

Selection from 
prototype 
candidates

Core prototype search module

→ Main objective of Phase 1: 
Reduce the search space of 
the prototype by selecting a 
small subset of input graphs 
to work on.

→ In Phase 2, we find the prototype graph from the graphs from Phase 1.
→ Main approach: Search common subgraph guided by the embedding / 
representation vectors from the underlying GNN
1. Step 1: Pre-compute all node-tuple-wise similarity scores
2. Step 2 (Core prototype search module): Extract common subgraph pattern via 

searching for graph patterns with highest overall similarity score
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Phase 1: Selection from graph-level embeddings

• (Step 1-1) Use the graph dataset to acquire graph-
level embeddings for all input, where it contains 
semantic information learnt from the GNN.

• (Step 1-2) Use clustering to capture different sub-
pattern within each class.

• (Step 1-3) Only select nodes that are near the 
centroid for each cluster.

Step 1-1

Step 1-2

Step 1-3



Proposed Methodology 6

Phase 2: Prototype discovery with Prototype Scoring Function 

Prototype discovery function          

Model-level 
explanation 
for class 1

(Step 1)

(Step 2)
Search session 1

(Step 3)

Search session budget

. . .

. . .

bu
dg

et
ca

nd
id

at
e 

pr
ot

ot
yp

es

Objective: We want the nodes of the final prototype graph to have a strong alignment with the 
nodes of the k selected graphs.

Question: How can we efficiently capture node-wise similarity between all k selected graphs, which is 
to be used during the discovery process?

Solution: Define a new Prototype Scoring Function, and pre-compute a similarity tensor that 
captures all node-wise alignments from node-level embeddings from each k graphs
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Phase 2: Prototype discovery with Prototype Scoring Function 
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Objective: We want the nodes of the final prototype graph to have a strong alignment with the 
nodes of the k selected graphs.

Question: Given the node-level similarity scores, how do we extract the common graph pattern?

Solution: Perform an iterative walk for each k graph simultaneously, selecting the nodes that has 
the highest similarity scores as the next node during the process.
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Datasets for explainable AI on graphs

Ground-truth explanations: Small subgraph 
motifs (house-shaped, grid-shaped)

Chemical molecule groups
(Real-world knowledge-based explanations)

Visual semantics

Ground-truth explanations

*TP: Test performance of GNN
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Qualitative evaluation: Comparison against ground-truth explanations

Head Body None Carbon ChlorineOxygen Nitrogen Iodine Phosphorus Bromine Hydrogen Fluorine Sulfur

Ground
truth

prototype

XGNN

PAGE

BA-house BA-grid Benzene MUTAG Solubility (Class 0) Solubility (Class 1)

Compared to XGNN [1], PAGE is able to extract explanations that much more resembles the 
ground-truth explanations (prototypes) for each dataset (synthetic and real-world).

[1] Yuan, H.; Tang, J.; Hu, X.; and Ji, S. 2020. XGNN: Towards model-level explanations of graph neural networks. In KDD.
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Quantitative evaluation: Accuracy, Density, Consistency, Faithfulness

For 4 different metrics, PAGE shows clear supiority against XGNN for all 6 datasets.

• Accuracy: How much the prototype overlaps with the ground-truth explanation?
• Density: How much each method produces explanations with lower graph density? (i.e., sparisity)
• Consistency: How much robust is each method for different GNN settings (e.g., # of hidden dimensions)?
• Faithfulness: How much the quality of the explanation correlate with the actual performance of the GNN?
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How much search trials are required?

• During phase 2, we implement a strategy that 
involves performing multiple attempts of 
extraction (with different starting points).

• Empirically, we find that PAGE can find the best 
result in the first try for most of the time.
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How much does instance-level methods agree with our results?

• We also explore the alignment between PAGE and 
other well-known instance-level explanation methods 
(i.e., Input X Gradient, GNNExplainer)

• We ask each instance-level explanation: How much do 
you think the explanation of PAGE includes the 
important parts in terms of explanation?

• Procedure:
• Get G1 from PAGE.
• Select an instance-level explanation method.
• Ask to explain G1 as a heatmap (G2).
• Also ask the same when the GNN is not trained 

(G3), which is considered as a ‘baseline’.

• Results show that instance-level methods generally 
agree that the prototypes of PAGE does include 
essential subgraph patterns learned by the GNN.

G1
G2 G3
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How does PAGE perform when only a subset of dataset is available?

• We generate an incomplete dataset with only 10 graphs.
• We then run a simplified version of PAGE, where it skips Phase 1 (selection of k graphs via clustering) and 

replaces by random selection.
• We then run PAGE multiple times and observe the output.

Empirical results clearly indicate PAGE can reliably run when the dataset is incomplete.
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On the efficiency and quality of the Prototype Scoring Function

We compare our Prototype Scoring Function with naïve baselines, including a pairwise average of 
the arithmetic (AM) & geometric mean (GM).

The runtime comparison shows that our 
proposed Prototype Scoring Function is faster 

than alternatives.

We also show that there are a high correlation 
between our Prototype Scoring Function and 

the alternatives, providing an intuitive 
understanding of what it calculates.
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• In our work, we propose PAGE, a novel model-level explanation of a GNN model that
performs graph classification.

• In contrast to XGNN, which relies on reinforcement learning that requires carefully
designed reward functions along with domain knowledge, our method discovers
explanations within the dataset.

• Our future avenues include expanding our method to GNNs with node-level or edge-level
tasks.
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