Date: 30th Nov. 2022

Introduction to SimCLR

(...and a little more)

Presenter: Yong-Min Shin

jordan3414@yonsei.ac.kr / yongminshin.simple.ink

Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020 (7000+ citations)

Cole et al., When does contrastive visual representation learning work?, CVPR 2021

00 Three main topics

* Other awesome works couldn't fit into this presentation, refer to [4], [5] and more

1

Overview of self-supervised learning (SSL) [1]

- Idea of self-supervision
- Typical approach between NLP vs. Vision

2

SimCLR (A simple framework for contrastive learning of visual representations) [2]

- Overview and augmentation viewpoint
- Recipes for good representation learning

3

Towards understanding SSL [3]

- Empirical study using SimCLR
- Analysis on 1) Dataset size 2) Dataset domain 3) Data quality 4) Task granularity

- [1] LeCun, Lecture on YouTube at NYU (link: https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=13) (2020)
- [2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020
- [3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021
- [4] Tian et al., What makes for good views for contrastive learning?, NeurIPS 2020
- [5] Wang & Liu, Understanding the behaviour of contrastive loss, CVPR 2021

01 Overview of SimCLR: Basic idea of self-supervision [1]

Self-supervised learning: Predict everything from everything else

- Supervised learning: Learning with supervision is extremely successful
 - Models adjust parameters by effective error signals
 - Assumption we have covered in this course: **Smoothness assumption** for semi-supervised learning
- 2. Unsupervised learning: Labeling is very expensive, unlabeled data is substantially larger
 - Assumption (belief, prior) of data structure is expressed in loss function
 - [5], [6]: Similar approach in graphs
- 3. Self-supervised learning: Use the given data itself as supervision
 - Early ideas with Siamese nets & "metric learning": [7], [8]
 - First success in natural language processing: GPT [9], BERT [10]
 - Success translated to image processing domain: MoCo [11], SimCLR [1], BYOL [12], SimSiam [13] etc.
 - Biological motivation: Humans learn a large portion of the world by observation (even without supervision)

Observe enough and we can understand

- View angle
- Depth
- Brightness
- Shadow (+ direction of light) etc...
- [1] LeCun, Lecture on YouTube at NYU (link: https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=13) (2020)
- [5] Perozzi et al., DeepWalk: Online learning of social representations, KDD 2014
- [6] Hamilton et al., Inductive learning on large graphs, NeurIPS 2018
- [7] Bromley, Guyon, LeCun, Sackinger and Shah, Signature verification using a "Siamese" time delay neural network, NeruIPS 1993
- [8] Radford et al., Improving language understanding by generative pre-training, OpenAI blog (2018)
- [10] Devlin et al., BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv (2018)
- [11] He et al., Momentum contrast for unsupervised visual representation learning, CVPR 2020
- [12] Grill et al., Bootstrap your own latent: A new approach to self-supervised learning, NeurIPS 2020
- [13] Chen et al., Exploring simple Siamese representation learning, CVPR 2021

01 Overview of SimCLR: Basic idea of self-supervision [1]

Self-supervised learning: Predict everything from everything else

1. Natural language processing

2. Image processing: Lean towards augmentation-based SSL

01 Overview of SimCLR [2]

Introduction: Unsupervised learning just as good as supervised learning

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-50. Our method, SimCLR, is shown in bold.

Unsupervised learning **reaches performance of supervised learning** for ImageNet

1. Reaching supervised learning performance

- Representations from SimCLR + linear classifier reaches similar performance from supervised learning
- Since we user linear classifier, most benefit comes from SimCLR

2. Crucial components

- Composition of multiple data augmentation
- Non-linear projection head
- Contrastive cross entropy loss
- Larger batch sizes and longer training

01 Overview of SimCLR [2]

01 Overview of SimCLR [2]

A viewpoint on data augmentation [14]

Figure 1: Overview of our problem formulation. We partition the latent variable z into content c and style s, and allow for statistical and causal dependence of style on content. We assume that only style changes between the original view x and the augmented view \tilde{x} , i.e., they are obtained by applying the same deterministic function f to z = (c, s) and $\tilde{z} = (c, \tilde{s})$.

- 1. Assumption: Style and content (semantic characteristics) are related
- 2. Data that we measure is **created by a deterministic process from style & content**
- Then, augmentation only changes the style of the data and leaves the content unchanged

-50

-40

-30

-20

-10

1. Composition of data augmentation is crucial for learning good representations

[Settings of augmentation ablation study]

- 1. Only apply one (diagonal in Figure 5) or two (off-diagonal in Figure 5) augmentation to one of the branches
- 2. The remaining branch is always the identity

^{*}This is not the original setting and thus hurts the performance

2nd transformation

Random cropping + random color distortion stands out

2. CL needs stronger data augmentations than supervised learning

Stronger color distortion

	Color distortion strength					
Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
SimCLR Supervised	77.0	76.7	76.5	75.7	75.4	77.1

- 1. Stronger color augmentation improves unsupervised learning
- 2. Supervised methods have the opposite trend

3. Unsupervised CL benefits more from bigger models

Gap between supervised and unsupervised models gets less when the model size increases

4. Non-linear projection head improves the representation quality of the layer before it

Projection output dimensionality

What to predict?	Random guess	Repres h	sentation $g(\boldsymbol{h})$
Color vs grayscale	80	99.3	97.4
Rotation	25	67.6	25.6
Orig. vs corrupted	50	99.5	59.6
Orig. vs Sobel filtered	50	96.6	56.3

Loss of information

Plot: Non-linear projections > linear projections > None

- Hypothesis: <u>Contrastive loss can lose some information</u> critical for some downstream tasks
- Another experiment: <u>Compare amount of information</u> before & after non-linear projection
- Table: A lot of information is lost after non-linear projection

5. Normalized cross entropy loss with adjustable temperature works better then alternatives

				(SimCLR)
Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent
50.9	51.6	57.5	57.9	63.9

Table 4. Linear evaluation (top-1) for models trained with different loss functions. "sh" means using semi-hard negative mining.

Name	Negative loss function
NT-Xent	$u^T v^+ / au - \log \sum_{oldsymbol{v} \in \{oldsymbol{v}^+, oldsymbol{v}^-\}} \exp(oldsymbol{u}^T oldsymbol{v} / au)$
NT-Logistic	$\log \sigma(\boldsymbol{u}^T\boldsymbol{v}^+/\tau) + \log \sigma(-\boldsymbol{u}^T\boldsymbol{v}^-/\tau)$
Margin Triplet	$-\max(\boldsymbol{u}^T\boldsymbol{v}^ \boldsymbol{u}^T\boldsymbol{v}^+ + m, 0)$

NT-Xent performs best over alternatives

6. CL benefits more from larger batch sizes and longer training

An empirical analysis of SSL using SimCLR

1. Dataset size: There is little benefit beyond 500k

(a) Linear Evaluation

1. Dataset size: SSL provides a good model initialization

1. Dataset size: SSL needs a lot of labeled images to match supervised performance

[Linear evaluation]
Starts to match the performance
near ~1M labeled images
+ iNat21 is a challenging dataset

[Fine-tuning]
Starts to match the performance
near 100~500k labeled images

2. Domain: Pre-training from the same domain is always better

*Linear evaluation

Pretraining	iNat21	ImageNet	Places36	5 GLC20
iNat21 (1M) SimCLR	0.493	0.519	0.416	0.707
ImageNet (1M) SimCLR	0.373	0.644	<u>0.486</u>	0.716
Places365 (1M) SimCLR	0.292	0.491	0.501	0.693
GLC20 (1M) SimCLR	0.187	0.372	0.329	0.769
ImageNet is the be transferring between			Pre-training with the same domain is dominantly better	

Also, adding & combining different datasets usually does not benefit the performance

3. Quality: SimCLR is critical in image resolution, and robust in noise

4. Task granularity: SimCLR is critical in image resolution, and robust in noise

SimCLR: One of the most impactful works in vision (2020)

- 1. How to perform good? [2]
 - Diverse & strong augmentations
 - Large models, large batches, longer training
 - Non-linear projection
 - NX-Tent loss function
- 2. Broader analysis [3]
 - Dataset size has diminishing returns
 - SSL provides good initialization
 - Still need lot of labeled data
 - Keep the dataset domain consistent
 - Use high resolution images
 - May not be powerful in datasets with subtler class differences