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00 Three main topics

* Other awesome works couldn’t fit into this presentation, refer to [4], [5] and more

Overview of self-supervised learning (SSL) [1]

* |dea of self-supervision
*  Typical approach between NLP vs. Vision

SIMCLR (a simple framework for contrastive learning of visual representations) [2]

*  Overview and augmentation viewpoint
*  Recipes for good representation learning

Towards understanding SSL [3]

*  Empirical study using SimCLR
*  Analysis on 1) Dataset size 2) Dataset domain 3) Data quality 4) Task granularity

[1] LeCun, Lecture on YouTube at NYU (link: https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL801410VxglKcAHIIsUOtxr30uTTaWX2v&index=13) (2020)
[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021

[4] Tian et al., What makes for good views for contrastive learning?, NeurlPS 2020

[5] Wang & Liu, Understanding the behaviour of contrastive loss, CVPR 2021



https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=13

01 Overview of SIMCLR: Basic idea of self-supervision [1]
Self-supervised leaming: Predict everything from everything else

1. Supervised learning: Learning with supervision is extremely successful
»  Models adjust parameters by effective error signals
«  Assumption we have covered in this course: Smoothness assumption for semi-supervised learning
2. Unsupervised learning: Labeling is very expensive, unlabeled data is substantially larger
«  Assumption (belief, prior) of data structure is expressed in loss function
«  [5] [6]: Similar approach in graphs
3. Self-supervised learning: Use the given data itself as supervision
»  Early ideas with Siamese nets & “metric learning’: [7], [8]
»  First success in natural language processing: GPT [9], BERT [10]
»  Success translated to image processing domain: MoCo [11], SimCLR [1], BYOL [12], SimSiam [13] efc.
»  Biological motivation: Humans learn a large portion of the world by observation (even without supervision)
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Observe enough and we can understand
- View angle

) - Depth
- Brightness
- Shadow (+ direction of light)
etc...

[1] LeCun, Lecture on YouTube at NYU (link: https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL801410VxglKcAHIIsUOtxr30uTTaWX2v&index=13) (2020)
[5] Perozzi et al., DeepWalk: Online learning of social representations, KDD 2014

[6] Hamilton et al., Inductive learning on large graphs, NeurlPS 2018

[7] Bromley, Guyon, LeCun, Sackinger and Shah, Signature verification using a “Siamese” time delay neural network, NerulPS 1993

[8] Radford et al., Improving language understanding by generative pre-training, OpenAl blog (2018)

[10] Devlin et al., BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv (2018)

[11] He et al., Momentum contrast for unsupervised visual representation learning, CVPR 2020

[12] Grill et al., Bootstrap your own latent: A new approach to self-supervised learning, NeurlPS 2020

[13] Chen et al., Exploring simple Siamese representation learning, CVPR 2021



https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=13

01 Overview of SIMCLR: Basic idea of self-supervision [1]
Self-supervised leaming: Predict everything from everything else

1. Natural language processing

“This is a piece of text extracted from a large set of news articles”

Big gigantic Decoder
N

code

Big gigantic Encoder

“This is a [MASK] of text extracted [MASK] a large set of [MASK] articles”

2. Image processing: Lean towards augmentation-based SSL

Encoder —> hi \

Cost(h1, h2)
—> 2 /

Encoder

[1] LeCun, Lecture on YouTube at NYU (link: https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL801410VxglKcAHIIsUOtxr30uTTaWX2v&index=13) (2020)
Also, https://www.youtube.com/watch?v=ZaVP25Y23nc&list=PL801410VxgIKcAHIIsUOtxr30uTTaWX2v&index=14 (2020)



https://www.youtube.com/watch?v=tVwV14YkbYs&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=13
https://www.youtube.com/watch?v=ZaVP2SY23nc&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=14

01 Overview of SIMCLR [2]

Introduction: Unsupervised leaming just as good as supervised leaming

~ L s . R S C o Unsupervised learning reaches
75F i N CoIEE P SIMELR- (4x) performance of supervised learning for ImageNet
S . *SimCLR (2x)
?) oCPCv2-L
© L
S 7T *simCLR some  dMoCo (49
§ oPIRL-c2x AMDIM
— 65} ‘iR -entMoCo (2x) 1. Reaching supervised learning performance
§' QSIPR?_VZ ' *  Representations from SImCLR + linear classifier reaches similar
5 go §MoCo ®BigBiGAN performance from supervised learning
< LA «  Since we user linear classifier, most benefit comes from SimCLR
(@]
©
£ 55} olnstDi eRotation 2. Crucial components
. nStoIse i i H { i «  Composition of multiple data augmentation
25 50 100 200 400 626 *  Non-linear projection head
Number of Parameters (Millions) «  Contrastive cross entropy loss

«  Larger batch sizes and longer training
Figure I. ImageNet Top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SImCLR, is shown in bold.

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020



01 Overview of SIMCLR [2]

Overview of method 3. Determine whether they came from same image

- [Contrastive loss function]

| Cross entropy loss (+ other stuff)

I Z, -

I o e e e e e e e e e e e e e e e e e [No explicit negative sampling]

For each data, consider the other 2(N - 1) samples as ‘negative’
g(-) () o
Projection head
h; <— Representation — h
A A

Encoder We use this encoder part at test time
(ResNet backbone) (remove projection head)

3 !
I ~ |
L L T |1
| |
L

2. Different data augmentations
Results in 2N (augmented) data points

1. Input data (Batch of N samples)

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020



01 Overview of SIMCLR [2]
A viewpoint on data augmentation [14]

style change

1. Assumption: Style and content (semantic characteristics) are related

2. Datathat we measure is created by a deterministic process from

|
1
1
1
|
1
1
1
|
1
1
1
|
1
! style & content

Figure 1: Overview of our pr Oblem for- 3. Then, augmentation only changes the style of the data and leaves the
mulation. We partition the latent variable content unchanged

z into content c¢ and style s, and allow for
statistical and causal dependence of style
on content. We assume that only style
changes between the original view x and
the augmented view X, i.e., they are ob-
tained by applying the same deterministic
functionftoz = (¢, s) and z = (c, s).

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020
[14] Kiuigelgen et al., Self-supervised learning with data augmentations provably isolates content from style, NeurlPS 2021



01 Overview of SIMCLR: Recipes for good representations [2]
1. Composition of data augmentation is crucial for leaming good representations

[Settings of augmentation ablation study]
1. Only apply one (diagonal in Figure 5) or two (off-diagonal
in Figure 5) augmentation to one of the branches
2. The remaining branch is always the identity
*This is not the original setting and thus hurts the performance

Crop

-50

Cutout
Color
Random cropping + random color distortion stands out

Sobel

Noise

1st transformation

Blur

Rotate

o®

ﬂjﬁv (ﬁNﬁ q;ﬁﬁ§ \ﬁfﬁe Qwﬁ

2nd transformation

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020



01 Overview of SIMCLR: Recipes for good representations [2]

2. CL needs sfronger data augmentations than supervised leaming

Stronger color distortion

Color distortion strength
Methods 1/8 1/4 1/2 1 1 (+Blur) | AutoAug 1. Stronger color augmentation improves unsupervised
learnin
SimCLR 59.6 61.0 62.6 632 64.5 6l.1 J
Supervised | 77.0 76.7 T76.5 75.7 754 77.1 2. Supervised methods have the opposite trend

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020



01 Overview of SIMCLR: Recipes for good representations [2]

3. Unsupervised CL benefits more from bigger models

80

75

70

55

50

............................................................................... xSup. R50(4x)
®R50(4x)
®R34(4x)
®R34 ;
® SimCLR for 100 epochs
% SimCLR for 1000 epochs
Py R18 ¢ Supervised ResNet for 90 epochs
0 50 100 150 200 250 300 350 400 450

Number of Parameters (Millions)

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020

Gap between supervised and unsupervised models gets less
when the model size increases
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01 Overview of SIMCLR: Recipes for good representations [2]

4. NorHinear projection head improves the representation quality of the layer before it

70

B

50 Projection

B Linear

40 | W Non-linear

[ None
30 .

%L

*\,07’& ’LQD‘%

PrOJectlon output dlmen5|onallty

: Representation
What to predict? Random guess
g © h  g(h)
Color vs grayscale 80 99.3 97.4
Rotation 25 67.6 u 25.6
Orig. vs corrupted 50 99.5 59.6
Orig. vs Sobel filtered 50 96.6 56.3
Loss of information

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020

Plot: Non-linear projections > linear projections > None

Hypothesis: Contrastive loss can lose some information critical
for some downstream tasks

Another experiment: Compare amount of information before &
after non-linear projection

Table: A lot of information is lost after non-linear projection



01 Overview of SIMCLR: Recipes for good representations [2]

5. Normalized cross enfropy loss with adjustable temperature works better then altematives

(SimCLR)
Margin NT-Logi. Margin (sh) NT-Logi.(sh) NT-Xent
50.9 51.6 57.5 57.9 63.9

Table 4. Linear evaluation (top-1) for models trained with different
loss functions. “sh™ means using semi-hard negative mining.

Name | Negative loss function
NT-Xent ulv" /7 — log 2 ve{vt, o} exp(u’v/7)
NT-Logistic logo(u' vt /7) +logo(—u'v /1)
Margin Triplet —max(u’v" —u'vT +m,0)

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020

NT-Xent performs best over alternatives



01 Overview of SIMCLR: Recipes for good representations [2]

6. CL benefits more from larger batch sizes and longer training

70.0 72

70

Batch size
256
512
65.0 1024
68 2048
62.5 4096
— — 8192
& 60.0 2 66 16384
= Batch size = 32768
57.5 256
512 64
55.0 1024
2048 6
52.5 4096
=
50.0 (T T 60 *® -

100 200 300 400 500 600 700 800 900 1000 100 200 400 800 1600 3200
Training epochs Training epochs

N

o

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020
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03 When does it work?: Focus on empirical analysis for visual representations

An empirical analysis of SSL using SimCLR

1. Dataset size

Large source '
dataset

A

Small source _& Downstream
._dataset tasks

How much data do we need to involve?

2. Domain

'?
. /’P
Domain A h‘\“\

Domaln B

Domaln C

Domain D i

What is the transferability between different data?

3. Quality
> |
Corrupted /? - )
source dataset =~ 2

Che 2

Downstream
tasks

How much is SSL robust to image corruption?

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021

4. Task granularity

/’: "

7

' Source dataset |

T
o0
Coarse-grained

downstream
tasks

\ 000 __

Fine-grained

downstream
tasks

Can SSL help for more difficult tasks?



03 When does it work?: Focus on empirical analysis for visual representations
1. Dataset size: There is little benefit beyond 500k

ImageNet
70 A
Diminishing returns after 500k
g9
60 1 -
> 5 Significant performance increase from more images
> i
© //
5
) 40 N /
bS§
— 30 -
a —@— Supervised
i) 50 - ImageNet SimCLR (1M Images)
—®- ImageNet SImCLR (500k Images)
ImageNet SImCLR (250k Images)
10 - ImageNet SimCLR (125k Images)
ImageNet SimCLR (50k Images)
O | | ! f ’ T ! L | ! ’ ! ’ ! L |
10* 10° 10°

Labeled Images

(a) Linear Evaluation

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021
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03 When does it work?: Focus on empirical analysis for visual representations

1. Dataset size: SSL provides a good model! initialization

ImageNet
70 1
60 -
> 50 A
m __..—"
| -
> e
O 40 - -2~
< o
~ 301 |
O —&— Supervised
i 20 4 ImageNet SImCLR (1M Images)
~® - ImageNet SimCLR (500k Images)
ImageNet SIimCLR (250k Images)
10 1 ImageNet SimCLR {125k Images)
ImageNet SimCLR (50k Images)
0
104 10° 10°

t Labeled Images t

Big gains from SSL pre-training (b ) Fine-Tunin g Gains from pre-training decreases as
in scarce supervision settings supervision becomes abundant

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021
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03 When does it work?: Focus on empirical analysis for visual representations

1. Dataset size: SSL needs a lot of labeled images to match supervised performance

iNat21 ImageNet == Places365
70 4 -8~ Supervised : 70 1 1 70 A
INat21 SimCLR (1M Images) 1 = | 1
60 1 -~ iNat21 SimCLR (500k Images) I 60 ——— 1 60 4 o —
- ' = o S LR T e !
50 4 a im mages 50 —— 504 1 1
e iNat21 SimCLR (50k Images) 1 B —— | | @ ﬁ,_‘-,»'_’ﬁ—l"al““ 1 [Llnear evaluatlon]
=] (= — . 5 T 1
3 40 3 40 = - = 3401 P —
g 1§97 o= / 89 o— — __y Starts to match the performance
'_g"_ 30 1 / : '_g'_ 30 1 —- Supervised E}_ 30 i —— Supervised near ~1M Iabeled images
= - = ImageNet SimCLR (1M Images) = Places365 SImCLR (1M Images) . . .
20 ’,,-""/ s 207 @ ImageNet SIMCLR (500K Images) 201 ®- Places365 SIMCLR (S00k Images) + jNat21is a Cha//englng dataset
10 ,....-"/ 5 10 ImageNet SImCLR (250k Images) 10 Places3E5 SImCLR (250k Images)
1 g 1 ImageNet SimCLR [125k Images) 7 Places365 SimCLR {125k Images)
.:-*“:_—F’_/ ImageNet SImCLR (50k Images) Places365 SImCLR {50k Images)
01 0 01
104 10° 10° 10* 10° 10° 10* 10° 10°
Labeled Images Labeled Images Labeled Images
(a) Linecar Evaluation
iNat21 ke ImageNet ¢y~~~ — 7 7 \I Places365
704 -8 Supervised 1 2 1 70 1 704
iNat21 SimCLR (1M Images) # | |
60 1 -@- INat21 SimCLR (500K Images) I 60 60
iNat21 SimCLR (250k Images) 1 . o L ] (T T T T \
& 504 iNatz1 SIMCLR (125K Images) - ——7 250 3 50 1
E INat21 SimCLR (50K Images) E - E I e I
= =] - S R Y . .
3 404 3 40 3 401 >~ Fine-tunin
< b, 2 g g====~ i Y [ g]
7 30 = 301 [P 7 301 lo- supencad Starts to match the performance
= 1 i) | ImageNet SimCLR (1M Images) e | Places 365 SimCLA (1M Images) -
20 20 8- ImageNet SIMCLR (500K Images) 20 - Places365 SIMCLR (500k Images) near 100~500k labeled images
ImageNet SimCLR (250k Images) Places365 SIMCLR (250k Images)
104 104 ImageNet SimCLR [125k Images) 10 1 Places365 SImMCLR {125k Images)
ImageNet SimCLR [50k lmages) Places365 SimCLR {50k Images)
04 0 01
104 10° 10° 104 10° 108 104 10° 10°
Labeled Images Labeled Images Labeled Images
(b) Fine-Tuning

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021
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03 When does it work?: Focus on empirical analysis for visual representations

2. Domain: Pre-training from the same domain is always befter

*Linear evaluation

Pretraining INat21 ImageNet | Places365 GLC20
iNa2T (IM) SimCLR | 70493710519 [ 0.416 [ 0707
ImageNet (IM) SimCLR | { 0.37371---.0.644 ~---.0.486 | 0.716 |
Places365 (1IM) SimCLR |$0.292 0.49T +---.0.501 "-}---0.693

GLC20 (1M) SimCLR 0.187 0.372 0.3297"~-}--,0.769"

ImageNet is the best when Pre-training with the same

transferring between datasets domain is dominantly better

Also, adding & combining different datasets usually does not benefit the performance

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021



03 When does it work?: Focus on empirical analysis for visual representations
3. Quality: SImCLR is critical in image resolution, and robust in noise

G
Q*
0‘53(0 D
oo" E(ﬁh
. © ,((\Q\ Downsampling hurts the
Q__EC:‘ o &° e performance significantly
h Y
900 Q@’C’
.\1'2»
ng" <O High frequency noise is relatively
‘3 i ineffective in reducing performance
< BN Supervised
Q,Qe W SimCLR
s -

E}, I T T T T T T T
A\ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Decrease in Top-1 Accuracy

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021



03 When does it work?: Focus on empirical analysis for visual representations

4. Task granularity: SImCLR is critical in image resolution, and robust in noise

ImageNet

1.01 @ —@— Supervised
ImageNet SimCLR
0.9 A
9
C 0.8-
S
|
b4
— 0.7 1 ' Gap between supervised vs. SimCLR increases
o
: 0.6 B
0.5 1
\} ? o 9 0 o) o)
n 0 0 o0 Wt o >
020, 0209y 02%¢y 0% m et g) oel ef* 0
O VTR VTR Y (poh) 0€550) 0819 © @00

Label Hierarchy Depth

Fine-grained labels (more difficult)

[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021



04 Summary

SimCLR: One of the most impactful works in vision (2020)
1. How to perform good? [2]
»  Diverse & strong augmentations
« Large models, large batches, longer training
*  NomHinear projection
»  NX-Tentloss function
2. Broaderanalysis [3]
»  Dalaset size has diminishing retums
»  SSL provides good initialization
«  Sitill need lot of labeled data
*  Keep the dataset domain consistent
«  Use high resolution images

*  May not be powerful in datasets with subtier class differences

[2] Chen et al., A simple framework for contrastive learning of visual representations, ICML 2020
[3] Cole et al., When does contrastive visual representation learning work?, CVPR 2021
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