Presented on 27%" Apr. 2021, Yonsei University

Challenging common assumptions in the
unsupervised learning of disentangled representations

GNN-YYK study
Presenter: Yong-Min Shin

Locatello F, Bauer S, Lucic M, Raetsch G, Gelly S, Schélkopf B, Bachem O., ICML 2019 (Best paper)




Contents

0.

Preliminary
I. Variational Autoencoders

What is disentanglement?
I. Intuitive description
II. Assumptions and criteria of disentanglement: Bengio et al., Goodfellow et al.
III. Summary

Related works (Baseline methods)
I. Before going in: VAEs and factorized aggregated posterior
II. B-VAE
III. AnnealedVAE
IV. FactorVAE
A% B-TCVAE

Contributions

Impossibility result
I. How difficult is the problem of unsupervised disentanglement?
II. What does this imply?

Experiment

I. Metrics

II. Inductive bias

III. Key experimental results

Conclusions



Preliminary: VAE

Variational Autoencoders

Formulation

logp(X) — Drr(Q(2]X)[|p(2|X)) = E.ngllog p(X|[2)] — Drr(Q(2|X)|[p(2))

\Encoder Decoder Encoder ’
VAE (ELBO)
4
Reconstruction loss Regularization
Encoder D_ecoder Encoder'
Actual loss function arg 12161)1 — Z :EzNQ¢ [log p(gcz ‘99 (2))] +DkrL (Q@ (Z‘x") ’ Ip(Z))]

i

4

- Reconstruction loss: compares the input and output data
- Regularization: Additional KL-divergence term to regularize latent space

Encode various features into a latent space



1. What is disentanglement?

Intuitive description

Design of the latent space such that it can explicitly control certain features.
Disentanglement can be thought of as:

What if we can explicitly set the axis of the latent space as the (human-recognizable) feature of our choice?
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Here, changing the value of an axis results in
changing several features in the decoder. Example of a disentangled latent space:
changing one value results in a single change in the decoder.

(Not disentangled)

Left from: https://github.com/hwalsuklee /tensorflow-mnist-VAE



1. What is disentanglement?

Assumptions and criteria of disentanglement

1. They should contain all the information present in x in a compact and interpretable structure (i) while
being independent from the task at hand (ii).

(i) (Bengio, Y. et al., Representation learning: A review and new perspectives, IEEE TPAMI (2013))
(ii) (Goodfellow et al., Measuring invariances in deep networks, NeurIPS 2009)

2. They should be useful for (semi-)supervised learning of downstream tasks (i), transfer (iii) and few shot
learning (iv)

(iii) (Scholkopf et al., On the causal and anticausal learning, ICML 2012)
(iv) (Peters et al, Elements of causal inference: foundations and learning algorithms, MIT Press, 2017)

3. They should enable to integrate out nuisance factors (v) to perform interventions, and to answer
counterfactual questions (iv).

(v) (Kumar et al., Variational inference of disentangled latent concepts from unlabeled observations. ICLR 2017)



1. What is disentanglement?

They should contain all the information present in x in a compact and interpretable structure (i)

(i) (Bengio, Y. et al., Representation learning: A review and new perspectives, IEEE TPAMI (2013))

3 WHAT MAKES A REPRESENTATION GOOD?

e Multiple explanatory factors: the data generating distribu-
tion is generated by different underlying factors, and for the
most part what one learns about one factor generalizes in many

configurations of the other factors. The objective to recover

or at least disentangle these underlying factors of variation is
discussed in Section 3.5.

Light source [~

Object shape |— Co_mpl.ﬂ )[ Image
Interactions

\

Material | _—
property )

Recover factors of
data generation

3.5 Disentangling Factors of Variation

Complex data arise from the rich interaction of many
sources. These factors interact in a complex web that can
complicate Al-related tasks such as object classification. For
example, an image is composed of the interaction between one
or more light sources, the object shapes and the material prop-
erties of the various surfaces present in the image. Shadows
from objects in the scene can fall on each other in complex
patterns, creating the illusion of object boundaries where there
are none and dramatically effect the perceived object shape.
How can we cope with these complex interactions? How can
we disentangle the objects and their shadows? Ultimately,
we believe the approach we adopt for overcoming these
challenges must leverage the data itself, using vast quantities
of unlabeled examples, to learn representations that separate
the various explanatory sources. Doing so should give rise to
a representation significantly more robust to the complex and
richly structured variations extant in natural data sources for
Al-related tasks.

Considerations such as these lead us to the
conclusion that the most robust approach to feature learning
is to disentangle as many factors as possible, discarding as
little information about the data as is practical.




1. What is disentanglement?

They should

independent from the task at hand (ii).

(ii) (Goodfellow et al., Measuring invariances in deep networks, NeurIPS 2009)

Deep architectures are capable to extracting these features.

[ Data
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Irrelevant input transformations

while being

Object recognition
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| Specific feature of the object
itself (shape, color etc.)
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=) | jllumination, scale, perspective
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.




1. What is disentanglement?

Summary

(Bengio, Y. et al., Representation learning: A review and new perspectives, IEEE TPAMI (2013))
A disentangled representation separates informative factors (align the axis) of variations in the data.

+ Better to find human-interpretable factors

Probably the reason why it fits
so well for generative models.

Light source [~

Object shape [— Co_mpl’ﬂ )[ Image ]
. J Interactions
[ Material |
. property J

Recover factors of
data generation

One-to-one
correspondence to axis

Left figure: Ashis Pati et al., “Attribute-based regularization of latent spaces for variational autoencoders”, Neural Computing and Applications , 2020.
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Before going in: VAEs and factorized aggregated posterior

The representation for r(x) is usually taken to be the mean
of the approximate posterior distribution Q)(z|x). Several
variations of VAEs were proposed with the motivation that
they lead to better disentanglement (Higgins et al., 2017a;

?

Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018;
Kumar et al., 2017; Rubenstein et al., 2018). The common
theme behind all these approaches is that they try to enforce

a factorized aggregated posterior| [ Q(z|x)P(x)dx| which
should encourage disentanglement. log p(X) — Dkr (Q(Z|X) | |p(Z|X)) — Esz [log p(X|Z)] — Dkr Q(z|X) |p(Z))

Francsco Locatello et al., ICML’19

\Encoder Decoder Encoder ;
Y
VAE (ELBO)

i Regularizati
Recent works (Higgins et al., 2017; Kim & Mnih, 2018: Reconstruction loss cetarization
Chen et al., 2018; Kumar et al., 2017; Ridgeway & Mozer, _ _Encoder DieCOder EHCOdez
2018) have introduced various regularizers to the objective arg 121;1 - Z -EZNQ¢ [log p(ﬂ[? ‘99 (Z) )] +PkL (Q¢5 (Z L ) ’ |p(z) )]
function of the Variational Autoencoder (VAE) (Kingma ’ 1

& Welling, 2013; Bengio et al., 2007), Evidence Lower
Bound (ELBO). They aim at factorizing aggregated poste-
rior,|q(z) = [ q(z|z)p(z)da|, which hopefully can encour-
age disentanglement.

Ze Cheng et al., Revisiting Factorizing Aggregated
Posterior in Learning Disentangled Representations
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Considered methods. All the considered methods augment
the VAE loss with a regularizer: The|3-VAE|(Higgins et al.,
2017a), introduces a hyperparameter in front of the KL reg-
ularizer of vanilla VAEs to constrain the capacity of the
VAE bottleneck. The |AnnealedVAE (Burgess et al., 2017)
progressively increase the bottleneck capacity so that the
encoder can focus on learning one factor of variation at the
time (the one that most contribute to a small reconstruc-

tion error). The

FactorVAE |(Kim & Mnih, 2018) and the

3-TCVAE

(Chen et al., 2018) penalize the total correla-

tion (Watanabe, 1960) with adversarial training (Nguyen
et al., 2010; Sugiyama et al., 2012) or with a tractable but
biased Monte-Carlo estimator respectively. The| DIP-VAE-I

and the

DIP-VAE-II

(Kumar et al., 2017) both penalize the

mismatch between the aggregated posterior and a factorized
prior. Implementation details and further discussion on the
methods can be found in Appendix B and G.

1. B-VAEs
2. AnnealedVAE

3. FactorVAE
4. B-TCVAEs

5— DIP-VAE-1L/HI



* I tried to use all notations that are frequently used in the literature, and some of them may not be consistent.

B-VAEs

[1] Higgins, Irina, et al. "beta-VAE: Learning basic visual concepts with a constrained variational framework." ICLR’17. 1199 citations.

Under review as a conference paper at ICLR 2017

3-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A
CONSTRAINED VARIATIONAL FRAMEWORK

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, Alexander Lerchner

Google DeepMind

{irinah, lmatthey, arkap, cpburgess,glorotx,
botvinick, shakir, lerchner}@google.com
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2. Related works (Baseline methods)

B-VAEs

=~

I |Encoder u—> Z |Decoder
ag

Previously, most of the studies in disentangled representation learning has focused on supervised or semi-supervised setting, and
there were almost no models on learning disentanglement in an unsupervised way.

Recently, *InfoGAN has proposed a scalable unsupervised approach using the framework of GAN.
However, it comes at the cost of
1. Training instability
2.  Low sample diversity
which are common shortcomings of the framework.

The objective is to use a VAE framework to learn disentanglement in an unsupervised manner.

*Chen, Xi, et al. "InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets." NIPS’16. 2202 citations.
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B-VAEs

Assumption and proposed method

v: Conditionally independent factors (want to disentangle)
w: Conditionally dependent factors (not interested, remain entangled)

AppleSimulator(v, w)

v = [color size]

\%

Assumption

Small green apple Big green apple Big red apple

I |Encoder H — 2 |Decoder
C e x ~ AppleSimulator(v, w) o

~>

p(x|z) = p(z|v,w) = AppleSimulator(v, w)

To make the latent vector to act like the generative parameters v and w, the authors propose to
enforce a higher constraint on the regularization term.

arg min — Z[]EzNQ¢ log p($i|99 (2))] HB

.0 i
(8>1)

Drr(Qo(2l2")[Ip(2))]

Apple images: https://www.applesfromny.com /varieties/
*Chen, Xi, et al. "InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets." NIPS’16. 2202 citations.
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B-VAEs
Lagrangian and KKT method, alignment ([1], [3])

p(x|z) = p(z|v,w) = AppleSimulator(v, w)

$
arg max Ep, (2)[Po(x|2)]

$

arg ma@X Ez~sSimul [E% (z]z) log po(z]2)]]

3

it 0 D@ (D)) < e
$
arg max Ey~simul[Eq, (z|2) [l0g po(z]2)]] —|B[ Dk L(q4(2|2)||p(2)) — €)
\ 4
awgmin 3" ~E...q, g P(a*lgo ()] + 5~ D Qo1 IP(2)) (8 > 1)

Stronger regularization term results in lowering the capacity of the latent space.

Which forces the encoder to focus on the most critical aspects of the input.
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B-VAEs

Experimental results
Dataset: celebA

(Proposed, beta = 250) Several features are simultaneously changed, The samples are not clean, and the
resulting in a messier transition. disentanglement is not clear.

Image: Higgins, Irina, et al. "beta-VAE: Learning basic visual concepts with a constrained variational framework." ICLR’17. 1199 citations.




* I tried to use all notations that are frequently used in the literature, and some of them may not be consistent.

Annealed VAEs

[1] Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2018). “Understanding disentangling in B-VAE” NeurIPS 2017. 351 citations

[2] Alemi, Alexander A., et al. "Deep variational information bottleneck.* ICLR’17. 411 citations.

Understanding disentangling in 5-VAE

Christopher P. Burgess, Irina Higgins, Arka Pal,
Loic Matthey, Nick Watters, Guillaume Desjardins, Alexander Lerchner
DeepMind
London, UK
{cpburgess,irinah,arkap,lmatthey,nwatters,gdesjardins,lerchner}@google.com

16
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AnnealedVAEs
Objective

Advantage of B-VAE

- Unsupervised disentanglement
(Does not need supervised knowledge
of the data generative factors)

Disadvantage of B-VAE
1. Why B-VAE can perform disentanglement?

What exactly causes the disentanglement? mm)p 2. Suggest practical improvements to the trade-off caused
Trade-off between disentanglement and by the formulation of B-VAE.

reconstruction fidelity
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AnnealedVAEs

Informational bottleneck

Q. What is the best latent representation Z of a data X7

If we want the representation to contain as much information of the target Y, the best option is to just set

Z=X

which is undesirable. The information bottleneck (first proposed by *Tishby) applies an information constant [.:

mBaXI(Z,Y;G) s.t.|[(X,Z;0) < 1.

that returns a familiar formulation.

ngXI(Z,Y;H) — BI(X, Z;0)

Therefore the resolution learns an encoding that is
1. Maximally expressive (informative) of Y: first term
2. Maximally compressive (to ‘forget’) of X: second term
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AnnealedVAEs

Informational bottleneck

mgxxI(Z,Y;Q) —BI(X, Z;0)

E.qllog p(X|2)] =Dk r(Q(2]|X)|[p(2)

We can consider the posterior distribution as the information bottleneck for the reconstruction task.

In 3-VAE, the posterior ¢(z|x) is encouraged to match the unit Gaussian prior p(z;) = N(0,1).
Since the posterior and the prior are factorised (i.e. have diagonal covariance matrix) and posterior
samples are obtained using the reparametrization (Eq. 4) of adding scaled independent Gaussian noise
0;€; to a deterministic encoder mean p; for each latent unit z;, we can take an information theoretic
perspective and think of ¢(z|x) as a set of independent additive white Gaussian noise channels z;,
each noisily transmitting information about the data inputs z,,. In this perspective, the KL. divergence
term Dy, (¢4 (2|x) || p(2)) of the 3-VAE objective (see Eq. 5) can be seen as an upper bound on the
amount of information that can be transmitted through the latent channels per data sample (since it
is taken in expectation across the data). The KL divergence is zero when ¢(z;|x) = p(z), i.e p; is
always zero, and o; always 1, meaning the latent channels z; have zero capacity. The capacity of the
latent channels can only be increased by dispersing the posterior means across the data points, or
decreasing the posterior variances, which both increase the KL divergence term.

4.

5.

1. The posterior q and prior p is factorized.
2. Think of q as the bottleneck that noisily
(Gaussian noise) transmitting information.

3. KL divergence is the upper bound of the
information that can be transmitted through
the latent channels
Zero KL divergence = mean of all latent space
is zero = zero information capacity
Increasing KL divergence = Increasing capacity
1) Diversifying the posterior means across data
points 2) Decreasing posterior variance
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AnnealedVAEs

Informational bottleneck

For example, in Figure 1, the sample
indicated by the red star might be drawn from the (green) posterior ¢(z3|z3), even though it would
occur more frequently under the overlapping (blue) posterior ¢(z1|z1), and so (assuming z; and x5
were equally probable), an optimal decoder would assign a higher log likelihood to z; for that sample.

Nonetheless, under a constraint of maximising such overlap, the smallest cost in the log likelithood
can be achieved by arranging nearby points in data space close together in the latent space. By doing
so, when samples from a given posterior ¢(zs|25) are more likely under another data point such as
x1, the log likelihood E, (4, |x,)[log p(x2|z2)] cost will be smaller if 1 is close to x5 in data space.

“Decrease variance”

Increasing KL divergence = Increasing capacity

~1 T T T 1 1) Diversifying the posterior means across data
T To T3 / points 2) Decreasing posterior variance
T Increasing capacity = Decreasing overlap between

. . . . . . data distributi
Figure 1: Connecting posterior overlap with minimizing the KL divergence and reconstruction ata GISLHDULIONS

error. Broadening the posterior distributions and/or bringing their means closer together will tend
to reduce the KL divergence with the prior, which both increase the overlap between them. But, a
datapoint & sampled from the distribution ¢(z,|x5) is more likely to be confused with a sample from
q(z1|x1) as the overlap between them increases. Hence, ensuring neighbouring points in data space
are also represented close together in latent space will tend to reduce the log likelihood cost of this
confusion.
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AnnealedVAEs

»
. .l» .

Reconstruction

The variation is spread across 4 dimensions

B8 = 150
0 S

The variation is spread across 2 dimensions
(with azis alignment)

More pressure of representation of the data
(High pressure = stronger bottleneck)

4

Answer to “How does B-VAE perform disentanglement?”
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Pressure 1)
Optimal way of representation

Pressure 2)
Diagonal covariance of
posterior distribution

AnnealedVAEs

Answer to “Why axis alignment?”

At this point we can ask what pressures could encourage this new factor of variation to be encoded
into a distinct latent dimension. We hypothesise that two properties of 3-VAE encourage this. Firstly,
embedding this new axis of variation of the data into a distinct latent dimension is a natural way to

satisfy the data locality pressure described in Sec. 4.2. A smooth representation of the new factor

will allow an optimal packing of the posteriors in the new latent dimension, without affecting the
other latent dimensions. We note that this pressure alone would not discourage the representational
axes from rotating relative to the factors. However, given the differing contributions each factor
makes to the reconstruction log-likelihood, the model will try to allocate appropriately differing
average capacities to the encoding axes of each factor (e.g. by optimising the posterior variances).
But, the diagonal covariance of the posterior distribution restricts the model to doing this in different
latent dimensions, giving us the second pressure, encouraging the latent dimensions to align with the

factors.
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Positional information first AnnealedVAES

Scale information next (~C=6 nats)

Shape information

Orientation informaton last
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Figure 3: Utilisation of data generative factors as a function of coding capacity. Top left: the
average KL (in nats) per factor f; as the training progresses and the total information capacity C'

of the latent bottleneck ¢(z|f) is increased. It can be seen that the early capacity is allocated to
positional latents only (x and y), followed by a scale latent, then shape and orientation latents. Top
right: same but plotted with respect to the reconstruction accuracy.

*The log can be base-2 to give units in “bits,”

or the natural logarithm base-e with units in “nats.”
(From: https://yongchaohuang.github.io/2020-07-08-kl-divergence/)

Answer to “Why axis alignment?”

Data

Bottom: image samples and
their reconstructions throughout training as the total information capacity of z increases and the
different latents z; associated with their respective data generative factors become informative. It
can be seen that at 3.1 nats only location of the sprite is reconstructed. At 7.3 nats the scale is also
added reconstructed, then shape identity (15.4 nats) and finally rotation (23.8 nats), at which point
reconstruction quality is high.

recons

15.4 nats 23.8 nats
recons

recons

3.1 nats
recons

L0, ¢;x(£),2,C) = Eq, ar)[log po (x|2)] — 7 [Dx (94 (2[f) || p(2))

**This formulation allows to control the “capacity” of the KL div.

UOI)RULIOJUL SSA] / }00Ua[}30q I83U0IIG
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AnnealedVAEs

Modified training objective
L0, ¢;x(£),2,C) = Eq, ar)[log po (x|2)] — 7 [Dx (94 (2[f) || p(2))

(a) Coloured dSprites

oneinat v R R NN
reon R CIRNENE

ian cr . o P PP P
annension [ R Al S G
T

v

Low KL div.
dimension

3 -

> +3

Single latent traversals

A.2 Training Details

~ used was 1000, which was chosen to be large enough to ensure the actual KL was always close to the target
KL, C'. For dSprites, C' was linearly increased from 0 to 25 nats over the course of 100,000 training iterations,
for CelebA it was increased to 50 nats.



* I tried to use all notations that are frequently used in the literature, and some of them may not be consistent.

Factor VA Es

[1] Kim, H., & Mnih, A. (2018, July). Disentangling by factorising. ICML 2018. 458 citations.

[2] Watanabe, S. Information theoretical analysis of multivariate correlation. IBM Journal of research and development, 4(1):66-82, 1960. 596 citations.

Disentangling by Factorising

Hyunjik Kim ' > Andriy Mnih !

'DeepMind, UK ’Department of Statistics, University
of Oxford. Correspondence to: Hyunjik Kim <hyun-
jikk@google.com>.
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FactorVAEs

Benefits of Unsupervised disentanglement

1. Humans are able to learn factors of variation unsupervised.
2. Labels are costly as obtaining them requires a human in the loop.
3. Labels assigned by humans might be inconsistent or
leave out the factors that are difficult for humans to identify.

Contributions

1. We introduce FactorVAE, a method for disentangling that

gives higher disentanglement scores than B-VAE for the same reconstruction quality.

2. We identify the weaknesses of the disentanglement metric of
Higgins et al. (2016) (B-VAE) and propose a more robust alternative.

A_H 2 A
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FactorVAEs
Revisit to Higgins et al. (B-VAE)

The distribution of representations for the entire

data set is then given by Since we assume that
— these factors vary independentl , we wish for a factorial
1) = By o la(210)] quuw ) disuibution[y (<) = [1}_, o(=) ).
Directly target dimension-wise independence...!
which is known as the marginal posterior or aggregate pos- l
terior, where pgy.:, 1S the empirical data distribution.
We may further break down this KL term as
I Actual calculation (Hoffman & Johnson, 2016; Makhzani & Frey, 2017)
The representgtion for r(x.) is u_suglly t.aken to be the mean Epdam(:r) [KL(q(z|2)||p(2))] = I(x; 2)|+K L(q(2)||p(2)),
of the approximate posterior distribution (z|x). Several |
variations of VAEs were proposed with the motivation that i
they lead to better disentanglement (Higgins et al., 2017a; Retain information ‘
Burgess et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Remember the second pressure
Kumar et al., 2017; Rubenstein et al., 2018). The common Penalizing this is not beneficial. in the previous paper
theme behind all these approaches is that they try to enforce ~ (diagonal covariance
a factorized aggregated posterior| [ Q(z|x)P(x)dx| which in the prior distribution)

should encourage disentanglement.

Source of disentanglement!
Francsco Locatello et al., ICML’19

l

Directly encourage independence
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FactorVAEs

Vanilla VAE

% Z [Eq(z|${ﬂ)[]0gp($(i)|2:)] — KL(q(z|$(i))||p(3))}

New term

“Total correlation (TC, [2])” — ’YKL(Q(Z) |(j(z)) (_j(z) — Hf:l Q(Zj)

Force the latent representation to

Algorithm 1 permute_dims dimension-wise independence
Input: {z:) cR?:5=1,...,B} l E————
for j =1toddo

7 < random permutation on {1, ..., B} . o _ A more
( zj(-i))f; e Z](w(i)))is; 1 efficient alternative 1nV01VF:s sampling a batch from ¢(z)
end for and then randomly permuting across the batch for each la-
Output: {2 : i =1,..., B} tent dimension (see Alg. 1). This is a standard trick used in
the independence testing literature (Arcones & Gine, 1992)
1 and as long as the batch is large enough, the distribution of

these samples samples will closely approximate g(z).

TC(z) = KL(q(2)][(z)) = Eqe [log @]

A
q( ) Use a discriminator D(z) that distinguish

D(z _



* I tried to use all notations that are frequently used in the literature, and some of them may not be consistent.

B-TCVAEs

[1] Chen, Ricky TQ, et al. "Isolating sources of disentanglement in variational autoencoders." NIPS’18, 427 citations.

“While Kim & Mnih [8] (FactorVAE) have independently proposed augmenting VAEs with an equivalent total

correlation penalty to the B-TCVAE, their proposed training method differs from ours and requires

an auxiliary discriminator network. (No need for additional discriminator or hyperparameter)”

Isolating Sources of Disentanglement in VAEs

Ricky T. Q. Chen, Xuechen Li, Roger Grosse, David Duvenaud
University of Toronto, Vector Institute
rtgqichen, lxuechen, rgrosse, duvenaud@cs.toronto.edu

29
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B-TCVAE

Decomposition of the regularization term

"

Epn) |KL(q(2|n)|[p(2)) | = KL (Q(Za”)HQ(Z)p(n)l"‘KL(Q(Z)HHQ(zj))+ZKL (9(2)[lp(z5))

-

(i) Index-Code MI N - PN -
/ @ Total Correlation Dimension-wise KL
Mutual information between the data and latent
(Notice that if this term is zero, it becomes the independent criteria)

Measurement of the dependent between multiple variables
(Penalizing this term is the most impactful factor in beta-VAEs)

Dimension-wise KL divergence
(Penalization of each dimension w.r.t. prior distribution)

We would like to verify the claim that TC is the most important term in this decomposition for
learning disentangled representations by penalizing only this term; however, it is difficult to estimate
the three terms in the decomposition. In the following section, we propose a simple yet general
framework for training with the TC-decomposition using minibatches of data.
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B-TCVAE

Estimation of the individual term

Epn) |KL(q(2|n)|[p(2)) | = KL (Q(Za”)HQ(Z)P(n)Z"‘KL(Q(Z)HHQ(zj))+ZKL (9(2)[lp(z5))

S A s
W
Dimension-wise KLL

1. Evaluation of this term depends on the entire dataset.
q(2) = Ep(nylg(z(n)]

2. Naive Monte Carlo approximation from a minibatch from p(n) is
likely to underestimate ¢q(z).

With a randomly sampled component, q(z|n) is close to 0,
whereas ¢(z|n) would be large if n is the component that z came from. So it is much better to sample
this component and weight the probability appropriately.

To this end, we propose using a weighted version for estimating the function log ¢(z) during training,
inspired by importance sampling. When provided with a minibatch of samples {n1, ..., nys }, we can
use the estimator

M M
1 1
Eqyllogq(2)] & - > |log ———> a(z(ni)ln;) (3)
i=1 j=1

where z(n;) is a sample from ¢(z|n;) (see derivation in Appendix C). This minibatch estimator is
biased, since its expectation is a lower bound®. However, computing it does not require any additional
hyperparameters.
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B-TCVAE

3.1.1 Special case: S-TCVAE

With minibatch-weighted sampling, it is easy to assign different weights («, 3, ) to the terms in (2):

ﬁﬁ—TC = Eq(z|n)p(n) [10gp(n|z)] o QIQ(Z;H) - B KL(Q(Z)H HQ(ZJ)) o WZKL (Q(ZJ)HP(ZJ))

(4)

While we performed ablation experiments with different values for « and , we ultimately find that
tuning 3 leads to the best results. Our proposed 3-TCVAE uses « = v = 1 and only modifies the

hyperparameter 3. While Kim & Mnih [8] have proposed an equivalent objective, they estimate TC
using an auxiliary discriminator network.




* I tried to use all notations that are frequently used in the literature, and some of them may not be consistent.

[1] Kumar, A., Sattigeri, P., & Balakrishnan, A. Variational inference of disentangled latent concepts from unlabeled observations. ICLR 2018. 171 citations.

“Unlike B-VAE (Higgins et al., 2017), our approach does not introduce any extra conflict between disentanglement of the

latents and the observed data likelihood, ...”

Published as a conference paper at ICLR 2018

VARIATIONAL INFERENCE OF DISENTANGLED LATENT
CONCEPTS FROM UNLABELED OBSERVATIONS

Abhishek Kumar, Prasanna Sattigeri, Avinash Balakrishnan
IBM Research Al

Yorktown Heights, NY
{abhishk,psattig,avinash.bala}@us.ibm.com
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DIP-VAE-I/II

Expected variational posterior Expected posterior
() = [[as(alxp(x)dx po(2) = [ pa(alx)p(x)dx

In general, the prior p(z) and expected posterior pg(z) will be different, although they may be close
(they will be same when pg(x) = [ pg(x|z)p(z)dz is equal to p(x)). Hence, variational posterior

inference of latent variables with disentangled prior naturally encourages inferring factors that are

close to being disentangled. We think this is the reason that the original VAE (Eq. (1)) has also
been observed to exhibit some disentangling behavior on simple datasets such as MNIST (Kingma &
Welling, 2013). However, this behavior does not carry over to more complex datasets (Aubry et al.,
2014; Liu et al., 2015; Higgins et al., 2017), unless extra supervision on the generative factors is
provided (Kulkarni et al., 2015; Karaletsos et al., 2015). This can be due to: (i) p(x) and pg(x) being
far apart which in turn causes p(z) and py(z) being far apart, and (ii) the non-convexity of the ELBO
objective which prevents us from achieving the global minimum of E4xKL(q4(z|x)||pe(z|x)) (which
is 0 and implies KL(q,(2z)||pg(z)) = 0). In other words, maximizing the ELBO (Eq. (1)) might also
result in reducing the value of KL(q4(2)||p(z)), however, due to the aforementioned reasons, the
gap between KL(q,(2z)||p(z)) and E, KL(q4(z|x)||pe(z|x)) could be large at the stationary point
of convergence. Hence, minimizing KL(¢4(z)|[p(z)) or any other suitable distance D(q4(z). p(2z))
explicitly will give us better control on the disentanglement. This motivates us to add D(q4(z)||p(z))
as part of the objective to encourage disentanglement during inference, i.e.,

weax Bx [Egng, (afx) l0g P (x]2)] — KL(gs (2lx)llp(2))] -2 D(4s(2)llp(2)

?

4)

=

where A controls its contribution to the overall objective. We refer to this as DIP-VAE (for Disentan-
gled Inferred Prior) subsequently.

We have seen similar arguments several times now.

(i) The original data distribution and the
reconstructed output being far apart

(ii) The laten code does not actually represent the
true latent distribution

Although ELBO helps reducing (ii), it would be better
to explicitly add a regularization term for this.



3. Contributions

Challenges in assumptions

Impossibility of unsup. disentanglement ;
P Y p 8 e We analyze our experimental results and challenge com-

e We theoretically prove that (perhaps unsurprisingly) the

unsupervised learning of disentangled representations is
fundamentally impossible without inductive biases both
on the considered learning approaches and the data sets.

Investigation of current approaches

e We investigate current approaches and their inductive

biases in a reproducible large-scale experimental study'
with a sound experimental protocol for unsupervised dis-
entanglement learning. We implement six recent unsu-
pervised disentanglement learning methods as well as six
disentanglement measures from scratch and train more
than 12 000 models on seven data sets.

Library that contains this work

We release disentanglement_1ib?, a new library
to train and evaluate disentangled representations. As re-
producing our results requires substantial computational
effort, we also release more than 10 000 trained models
which can be used as baselines for future research.

mon beliefs in unsupervised disentanglement learning: (i)
While all considered methods prove effective at ensuring
that the individual dimensions of the aggregated posterior
(which is sampled) are not correlated, we observe that the
dimensions of the representation (which is taken to be the

mean) are correlated. (i1) We do not find any evidence

that the considered models can be used to reliably learn

disentangled representations in an unsupervised manner

as random seeds and hyperparameters seem to matter
more than the model choice. Furthermore, good trained
models seemingly cannot be identified without access
to ground-truth labels even if we are allowed to transfer
good hyperparameter values across data sets. (ii1) For
the considered models and data sets, we cannot validate
the assumption that disentanglement is useful for down-
stream tasks, for example through a decreased sample
complexity of learning.

Suggestions for future research

e Based on these empirical evidence, we suggest three crit-

ical areas of further research: (i) The role of inductive bi-
ases and implicit and explicit supervision should be made
explicit: unsupervised model selection persists as a key
question. (i1) The concrete practical benefits of enforcing
a specific notion of disentanglement of the learned rep-
resentations should be demonstrated. (ii1) Experiments
should be conducted in a reproducible experimental setup
on data sets of varying degrees of difficulty.




4. Impossibility result

How difficult is the problem of unsupervised disentanglement?

The first question that we investigate 1s whether unsuper-
vised disentanglement learning is even possible for arbitrary
generative models. Theorem | essentially shows that with-
out inductive biases both on models and data sets the task
1s fundamentally impossible. The proof is provided in Ap-
pendix A.

What is inductive bias? [1]

An inductive bias allows a learning algorithm to prioritize one solution (or interpretation) over
another, independent of the observed data. [...] Inductive biases can express assumptions about
either the data-generating process or the space of solutions.

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section 2.

[1] Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." (2018).
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How difficult is the problem of unsupervised disentanglement?

Theorem 1. Ford > 1, let z ~ P denote any distribution

which admits a density

p(z) = H;.i:l p(z; —Fhen—there———

exists an|infinite family of bijective functions f =

supp(z) such that

9fi(u)

81‘.Lj

#+ 0 almost everywherefor-att————>

i and j (i.e., z and f(z) are completely entangled) and

P(z < u) = P(f(z) < u) for allu—csupplz(testhey—

have the same marginal distribution).

Assume disentanglement is possible

“The problem is very difficult”

Not disentangled anymore

But the latent distribution did not essentially change

In other words, even if we succeed in disentanglement, there are an infinite number of
ways to generate the same latent space which we cannot distinguish from a

* Definition of support set

supp(f) = {z € X| f(z) # 0}

distribution standpoint.

f(u) = g~ (A" (Ah(g(u))))

The proof find an explicit function of such a bijective function f.
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What does this imply?

While Theorem 1 shows that unsupervised disentanglement
learning is fundamentally impossible for arbitrary genera-
tive models, this does not necessarily mean it is an impossi-
ble endeavour in practice. After all, real world generative

models may have a certain structure that could be exploited
through suitably chosen inductive biases. However, Theo-
rem | clearly shows that inductive biases are required both
for the models (so that we find a specific set of solutions)

and for the data sets (such that these solutions match the true

generative model). We hence argue that the role of inductive
biases should be made explicit and investigated further as
done in the following experimental study.

We need additional assumptions (model & data) to narrow down the solution space.
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Metrics

BetaVAE metric Factors of generation (want to disentangle)

Given a dataset D = { X, C, W} as described in Sec. 2, where
data points are obtained using a ground truth simulator process x ~ Sim(v) w), and given labels y ~
Uni f[1...K] of a subset of the independent data generative factors v € V for at least some instances,
we train a linear classifier to predict p(y|zqi). We choose a classifier with a low VC-dimension
in order to ensure that it has no capacity to perform nonlinear disentangling itself. Assuming that
the dataset D contains a balanced distribution of ground truth factors (v, w), we calculate zg;s as
the average pairwise difference between L vectors z;; and z;;, where ¢(z|x) ~ N (u(x),0(x)), and
z;; = p(xy;) and z;; = p(x;;). Images x;; and x;; are generated using the ground truth factors
(vii, wii) and (vg;, wy;) using the process x; ~ Sim(vy, wy). Ground truth factor vectors (v;;, w;)

and (v;;, w;) are randomly sampled from their corresponding distributions v; ~ p(v) w; ~ p(w).

In each pair (v;, v;) forall [ € L, one of the factors v;, remains unchanged (v;r, = v;x). The index of

this stable generative factor is equal to the label ¥ that the linear classifier is trying to predict.

Same factor (label) Dttt bbb N

v

EuE

Image 1 Image 2

v
B
v

Simulator (Not decoder) -

l

Latent 1 Latent 2

‘?

o
————————

- - Latent 1 Latent 2
A e e e e e e o e e B B P B B B B P B B o e e e /
v 1

Encoder (to be tested) Simple linear classifier

Image 1 i I i Image 2 I
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Figure 3. A 3-VAE model trained on the 2D Shapes data that
scores 100% on metric in Higgins et al. (2016) (ignoring the shape
factor). First row: originals. Second row: reconstructions. Re-
maining rows: reconstructions of latent traversals. The model only
uses three latent units to capture z-position, y-position, scale and
ignores orientation, yet achieves a perfect score on the metric.
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Metrics
Factor VAE metric
However this metric has several weaknesses. Firstly, it
could be sensitive to hyperparameters of the linear classifier ;e amerers)

optimisation, such as the choice of the optimiser and its
hyperparameters, weight initialisation, and the number of

training iterations. Secondly, having a linear classifier is
not so intuitive — we could get representations where each
factor corresponds to a linear combination of dimensions
instead of a single dimension. Finally and most importantly,
the metric has a failure mode: it gives 100% accuracy even
when only A* — 1 factors out of K" have been disentangled;
to predict the remaining factor, the classifier simply learns
to detect when all the values corresponding to the KX — 1
factors are non-zero. An example of such a case is shown in
Figure 3.

(linear entanglement)

(under entanglement)
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Metrics
FactorVAE metric

Same factor (label)

v

Ol T t—

Normalize the representations

g (invariance to rescaling)
Simulator (Not decoder) — :
. - T . ) Choose the dimension
mage 21a8e with lowest variance
y
T Simple linear classifier
Encoder (to be tested) l
," """"""""""" | Attty \I ?
I 1
e . -
I 1
' Latent 1 Latent 2 ]

____________________________________________
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Metrics
Mutual Information Gap (B-TCVAES)

Our key insight is that the empirical mutual information between a latent variable z; and a
ground truth factor v;, can be estimated using the joint distribution defined by ¢(z;,vr) =

e P(vk)p(nlok)q(z;n).

Measure the normalized mutual information between a ground truth factor and the latent variable.

Note that a single factor can have high mutual information with multiple latent variables. We enforce
axis-alignment by measuring the difference between the top two latent variables with highest mutual
information. The full metric we call mutual information gap (MIG) is then

K
1 1
ELZZI H (vy) (I”(“"'ﬂ"“”‘“) e I”(“"j””“)) ©

i#5 )

where ji(k) = argmax; [ n(2j;v;) and K is the number of known factors. MIG is bounded by 0 and 1.

If the disentanglement is perfect, then one factor will have high mutual information with only one

latent variable, and therefore the difference between the second largest mutual information will be high.
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Metrics
[1] Modularity, [2] DCI Disentanglement, [3] SAP Score

Modularity (Ridgeway & Mozer, 2018) measures if each
dimension of 7(x) depends on at most a factor of variation
using their mutual information. The Disentanglement metric
of Eastwood & Williams (2018) (which we call DCI Disen-
tanglement for clarity) computes the entropy of the distribu- f{;;f’:nj;jjzf?jﬁniioj;”ﬁj;f;‘joifjm
tion obtained by normalizing the importance of each dimen-
sion of the learned representation for predicting the value of
a factor of variation. The SAP score (Kumar et al., 2017) 1s
the average difference of the prediction error of the two most
predictive latent dimensions for each factor.

[1] Ridgeway, K., & Mozer, M. C. (2018). Learning deep disentangled embeddings with the f-statistic loss. NeurIPS 2018
[2] Eastwood, C. and Williams, C. K. I. A framework for the quantitative evaluation of disentangled representations. ICLR 2018.
[3] Kumar, A., Sattigeri, P., and Balakrishnan, A. Variational inference of disentangled latent concepts from unlabeled observations. ICLR 2017.
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Inductive bias

Inductive biases. To fairly evaluate the different ap-
proaches, we separate the effect of regularization (in the
form of model choice and regularization strength) from the
other inductive biases (e.g., the choice of the neural architec-
ture). Each method uses the same convolutional architecture,
optimizer, hyperparameters of the optimizer and batch size.

Directly consider the effect
of latent space constraint

pvABs  argmin— > [E..q, logp(algn(:)] +[8] Dir(Qs(ela’)Ip(:))]

AnnealedVAEs £(0, 6:x(f),2,C) = Eq air) g po(x12)] — 7 | Dicr. (g0(2]f) | p(z))@

N
1 ;
FactorVAEs N Z [ g(z|z()) [log p(x ¢ )|Z)] (Q’(Z|$( UHP(@)}

_ RLEENEE)] @

ﬁ-TCVAES Lg_tc = Eq(z|n)p(n) [log p(n|z)] — C‘Jq(2§n) -3 KL(Q(Z)” HQ’(ZJ 'YZKL Z.? Mp( Zj )
J

DIP-VAE max Ex (B, (ahx) [l0g pe(x|2)] — KL(gs(2lx)llp(2))] -2 D(gs(2)llp(2))
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Key experimental results 1

Can current methods enforce an uncorrelated aggregated posterior and representation?

*Low TC = Better disentanglement

— VAE 3-WVAE

— FactorVAE —  [3-TCVAE

— DIP-VAE- — DIP-VAE-II

While many of the considered methods aim to enforce a
factorizing and thus uncorrelated aggregated posterior (e.g.,
regularizing the total correlation of the sampled representa-

Metric = TC (sampled) €—

000 n 1 1 I I
0.0 0.2 0.4 0.6 0.8

Regularization strength

R —Mtetr—"TCear) < _

tion), they use the mean vector of the Gaussian encoder as

0.7 - -
0.6 - L
0.5 - -
0.4 - -
0.3 - -
0.2 - L
M
/

0'0 a I ] ] | r
0.0 0.2 0.4 0.6 0.8 1.0

Regularization strength

Figure 1. Total correlation based on a fitted Gaussian of the sam-
pled (left) and the mean representation (right) plotted against reg-
ularization strength for Color-dSprites and approaches (except
AnnealedVAE). The total correlation of the sampled representation

decreases while the total correlation of the mean representation
increases as the regularization strength 1s increased.

the representation and not a sample from the Gaussian en-
coder. This may seem like a minor, irrelevant modification;
however, it 1s not clear whether a factorizing aggregated
posterior also ensures that the dimensions of the mean rep-
resentation are uncorrelated. To test the impact of this, we
compute the total correlation of both the mean and the sam-
pled representation based on fitting Gaussian distributions
for each data set, model and hyperparameter value (see
Appendix C and 1.2 for details).

Implications. Overall, these results lead us to conclude
with minor exceptions that the considered methods are effec-
tive at enforcing an aggregated posterior whose individual
dimensions are not correlated but that this does not seem
to imply that the dimensions of the mean representation

(usually used for representation) are uncorrelated.
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Key experimental results 2
How much do the disentanglement metrics agree?

., Dataset = Colop-dSprites . Dataset = Noisy-dSprites , Dataset = Scream-dSprites
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Figure 2. Rank correlation of different metrics on Noisy-dSprites
Overall, we observe that all metrics except Modularity seem mildly
correlated with the pairs BetaVAE and FactorVAE, and MIG and

DCI Disentanglement strongly correlated with each other.
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Key experimental results 3
How important are different models and hyperparameters for disentanglement?

Hyperparameter +

Random seed Random seed

1.00- Metri¢ = FactorVAE Score _ 1.00 - Metri¢ = FactorVAE Score _

0.95- - 0.95- -
w, =
0.90 - 7 0.90- 8_
0.85- & 0.85- 2
E o !
E 0.80- Al ;u 0.80- ;‘:‘T
0.75- & 7 075- a
0.70 E-' 0.70 <
0 D . %

0.65 - - 0.65 - E

060— I I | 1 ] I - 060— (] ] I | 1 1 -

0 1 2 3 4 5 0.0 0.2 04 06 0.8 1.0
Model Regularization strength

Figure 3. (left) FactorVAE score for each method on Cars3D.
Models are abbreviated (0=/3-VAE, 1=FactorVAE, 2=3-TCVAE,
3=DIP-VAE-I, 4=DIP-VAE-II, 5=AnnealedVAE). The variance is
due to different hyperparameters and random seeds. The scores are
heavily overlapping. (right) Distribution of FactorVAE scores for
FactorVAE model for different regularization strengths on Cars3D.
In this case, the variance is only due to the different random seeds.
We observe that randomness (in the form of different random
seeds) has a substantial impact on the attained result and that a
o00d run with a bad hyperparameter can beat a bad run with a
good hyperparameter.

Implication. The disentanglement scores of unsupervised
models are heavily influenced by randomness (in the form
of the random seed) and the choice of the hyperparameter
(in the form of the regularization strength). The objective
function appears to have less impact.
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Key experimental results 3
How important are different models and hyperparameters for disentanglement?

(a) Percentage of variance explained regressing the disentanglement scores on the different data sets from the objective function only.

BetaVAE Score  DCI Disentanglement FactorVAE Score MIG Modularity SAP

Cars3D 1% 36% 26%  34% 37% 13%
Color-dSprites 30% 39% 52%  26% 23%  29%
Noisy-dSprites 17% 21% 17% 11% 41% 6%
Scream-dSprites 89% 50% 76%  45% 60% 56%
Shapes3D 31% 21% 14%  20% 26% 10%
SmalINORB 68% 71% 58% T1% 62% 62%
dSprites 29% 41% 47%  26% 29% 31%

(b) Percentage of variance explained regressing the disentanglement scores on the different data sets from the Cartesian product of
objective function and regularization strength.

BetaVAE Score  DCI Disentanglement FactorVAE Score MIG Modularity SAP

Cars3D 4% 69% 42%  59% 51% 17%
Color-dSprites 69% 80% 61% T76% 40% 56%
Noisy-dSprites 26% 42% 25%  29% 50%  20%
Scream-dSprites 93% 74% 83% 66% 68%  75%
Shapes3D 61% 78% 53%  59% 49%  35%
SmalINORB 87% 89% 81%  88% 72%  82%
dSprites 59% 77% 54%  T2% 39% 56%

Rest of the variance is due to random seed (open for debate)
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Model type & Reg. strength

— VAE = FTCVWAE == DIP-VAE-II
— FactorVAE = DIP-VAE-l — AnnealedVAE |
0.95. Dataset = Cars3D, | Metric = FactorVAE Score | Reconstruction- -30
0.90 -
TC (sampled)- 1
w 0.85-
=
2 1 80. KL- -14
0.75 -
ELBO- -38
0.70+ : i i i r I
0.0 0.2 0.4 0.6 0.8 1.0
Regularization strength (A)
Overall,

there seems to be no model consistently dominating all
the others and for each model there does not seem to be a
consistent strategy in choosing the regularization strength to
maximize disentanglement scores. Furthermore, even if we
could identify a good objective function and corresponding
hyperparameter value, we still could not distinguish between
a good and a bad training run.

Key experimental results 4
Are there reliable recipes for model selection?

Unsup. score vs. Metrics

, Dataset = Shapes3D |
-4 59 22 -21

5 -11 -8 -11
-1 -38 -31 -11

L 48 9 s

® (© (O (8

Transferability of hyperparameters between datasets
ic= DCI Disentanglement

|
! dsprites (1) HELORRES 65 34 64 46 -
= Color-dSprites (1) — 100 60 21 63 47 -
> _ Noisy-dSprites (Ill) = 68 17 64 59 -
Scream-dSprites (IV)-. 685 60 68 36 69 -
29 - SmallNORB (V)- 34 21 17 36 Bl o -
B Cars3D (Vi) -/ 64 | 63 | 64 [EEN 21 |EGINNCEN-
: Shapes3D (VIl)-f 46 | 47 59 69 -9 85 100 -

(F) 1 ] 1 1 1 1 ]

(1 (o av)y o (v) vy v
We find a strong and
consistent correlation between dSprites and Color-dSprites.
While these results suggest that some transfer of hyper-
parameters is possible, it does not allow us to distinguish
between good and bad random seeds on the target data set.
If
we choose the same metric and the same data set (but a dif-
ferent random seed), we obtain a score of 80.7%. If we aim
. to transfer for the same metric across data sets, we achieve
While we do

observe some correlations, no clear pattern emerges which
leads us to conclude that this approach is unlikely to be
successful in practice.

around 59.3%. Finally, if we transfer both across metrics
and data sets, our performance drops to 54.9%.

Less than half success rate
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Key experimental results 5
Are these disentangled representations useful for downstream tasks
in terms of the sample complexity of learning?

In this section, we consider the simplest
downstream classification task where the goal is to recover
the true factors of variations from the learned representation
using either multi-class logistic regression (LR) or gradient
boosted trees (GBT).

Seem like a variation on the
disentanglement metrics

BetaVAE Score- 18 65
FactorVAE Score- 13 49
MIG- 18 63

DCI Disentanglement- 19 65
Modularity - -3 -
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However,
it is not clear whether this is due to the fact that disentangled
representations perform better or whether some of these
scores actually also (partially) capture the informativeness
of the evaluated representation.
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Figure 5. Rank correlations between disentanglement metrics and
downstream performance (accuracy and efficiency) on dSprites.
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Key experimental results 5
Are these disentangled representations useful for downstream tasks
in terms of the sample complexity of learning?
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To assess the sample complexity argument we compute
for each trained model a statistical efficiency score which
we define as the average accuracy based on 100 samples
divided by the average accuracy based on 10 000 samples.
Figure 6 show the sample efficiency of learning (based on
GBT) versus the FactorVAE Score on dSprites. We do not
observe that higher disentanglement scores reliably lead to
a higher sample efficiency.
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1. A factorizing aggregated posterior (which is sampled) does not seem to necessarily imply that the dimensions
in the representation (which is taken to be the mean) are uncorrelated.

2. Random seeds and hyperparameters seem to matter more than the model but tuning seem to require supervision.

3. We did not observe that increased disentanglement implies a decreased sample complexity of learning
downstream tasks.

4. Unsupervised disentanglement is hard to achieve unless accompanied by additional inductive bias.
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Proof. To show the claim, we explicitly construct a family of functions f using a sequence of bijective functions. Let d > 1
be the dimensionality of the latent variable z and consider the function g : supp(z) — [0, 1]¢ defined by

gi(v) =P(z; <wv;) Vi=1,2,...,d.

Since P admits a density p(z) = ][, p(z;), the function g is bijective and, for almost every v € supp(z), it holds that
—8%25:’) = ( for all z and agg—,{? = 0 for all 7 # 7. Furthermore, it is easy to see that, by construction, g(z) is a independent

d-dimensional uniform distribution. Similarly, consider the function & : (0, 1]¢ — R¢ defined by
hi(v) =40 (v;) Vi=1,2,...,d,

where () denotes the cumulative density function of a standard normal distribution. Again, by definition, 5 is bijective

with % # 0 for all 7 and % = 0 for all 7 # j. Furthermore, the random variable h(g(z)) is a d-dimensional standard
i J
normal distribution.
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Let A € R%*? be an arbitrary orthogonal matrix with A;; # 0 foralli =1,2,...,dand j = 1,2, ..., d. An infinite family
of such matrices can be constructed using a Householder transformation: Choose an arbitrary a € (0,0.5) and consider

the vector v with v1 = \/a and v; = 4/ E_ch fori = 2,3,...,d. By construction, we have v? v = 1 and both v; # 0 and
v; F \/gfor alli = 1,2,...,d. Define the matrix A = I; — 2vv’ and note that A;; = 1 — 2v? # 0 forall 1,2,...,d as

well as A;; = —v;v; # 0 for all ¢ # j. Furthermore, A is orthogonal since

AT A = (Id — QUUT)T (Id — viT) — I; — dvv! + 4’U(’UT’U)’UT = 1,.

Since A is orthogonal, it is invertible and thus defines a bijective linear operator. The random variable Ah(g(z)) € R is
hence an independent, multivariate standard normal distribution since the covariance matrix A” A is equal to I .
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Since I is bijective, it follows that h~(Ah(g(z))) is an independent d-dimensional uniform distribution. Define the
function f : supp(z) — supp(z)

f(u) =g~ (h(Ah(g(u))))

and note that by definition f(z) has the same marginal distribution as z under P, i.e., P(z < u) = P(f(z) < u) for all w.
Finally, for almost every w € supp(z), it holds that

Oh;(g(w))  99;(w)
Ay g 20

) _ #0,

Ou; Ohi(h; ' (Ah(g(w))) 8gi(g—1(h—1(Ah(g(w)))))
Ov; ov;

as claimed. Since the choice of A was arbitrary, there exists an infinite family of such functions f. []



