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VNN:	Vector neural	networks
²

Data Loss
(our belief)

Gradient descent

Physical (natural) priors

PIML: Field of machine learning that integrates prior physics knowledge [1].

→ What (task-suitable) priors are injected 
& How it is injected varies for different subfields.

Typical ML framework
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VNN:	Vector neural	networks
²

PIML includes various subfields, including PINN, PICV, PIGL, Operator learning etc.

PINN
(Physics-informed 
neural networks)

PICV
(Physics-informed 
computer vision)

PIGL
(Physics-informed 

graph learning)

Operator learning

Neural networks that encode model equations (e.g., PDE) [1]
Typically, PDEs are injected through the loss function (Raissi et al., 2019) [2]

PIML specifically dedicated to CV models and applications (e.g., 
Imaging, super-resolution, segmentation) [3] (Yuan et al., 2021) [4]

PIML for graph learning (e.g., molecular representation, 
dynamic particle simulation) [2]

(Sanchez-Gonzalez et 
al., 2020) [5]

Using neural networks to learn mappings between infinite 
dimensional function spaces [6]

DeepONets [7] & 
FNOs [8]
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VNN:	Vector neural	networks
²

Physical (natural) prior

VNN integrates SO(3) symmetry into the neural 
network architecture.

SO(3) symmetry is a natural prior for data points 
with no canonical ordering (ex. Point clouds).

Data Loss
(our belief)

Gradient descent

Some ro
ta
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n

Same ro
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n
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VNNs treat each dimension of its representation 
as a 3D vector.

Making each neuron 3D has the advantage of 
being naturally SO(3) symmetric.

This seems trivial, but cannot be done 
for scalar neurons (see red box; dimensions 

cannot be matched with the rotation matrix R.)

Some ro
ta

tio
n

Same ro
ta

tio
n

**Example: Counterclockwise rotation w.r.t. positive z axis is an 
element in group SO(3).

*This type of diagram is also the 
definition of equivariance & invariance properties
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A classical generalization procedure: 
Observation → Abstraction → Generalization.

Abstraction: How to decide when to ‘clip’?

1. A decision plane is set
2. Vectors ’under’ the

decision plane gets 
projected to the planeDecision plane

Direction vector

Observation

Generalization
Direction vector

(learnable)

3D vector neuron

Direction vector
(learnable)

3D vector neuron
(transformed)

X weight matrix

X weight matrix

Straightforward calculation shows that the new 
ReLU is rotation equivariant.

*Think of the previous example element of SO(3):
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By replacing linear layers (effectively, MLPs), it is used in other architectures as well.

VN-PointNet: Replace MLPs with VNNs

Table 1: Point cloud classification

Train time rotation augmentation Test time rotation augmentation

VN-DGCNN: Replace MLPs with VNNs

• Learning rotation with proper augmentation is very critical 
(see z/z vs. z/SO(3)).

• In z/SO(3), VNNs effectively generalize to other 
rotations even when only z-axis rotations were introduced 
during training (see z/z vs. z/SO(3) & z/SO(3)).

• Additional rotation prior is still beneficial even if the 
training set augmentation is proper (see SO(3)/SO(3)).
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Besides this point, VNN is a solid research with good practical implications.

Decision plane

Direction vector

Original ReLU ReLU in VNN
Direction vector

(learnable)

3D vector neuron

Decision plane is fixed to the 
positive direction

Decision plane is learnable with 
additional model parameters

• Previous neural networks were just fine with fixed decision planes: Do we really need learnable decision planes?

• Can we fix the direction vector to a trivial one (i.e., [1, 1, 1]) and still get the same results?

• Can we even set octant-based activation regions? (May need to perform multiple procedures in parallel)

• Apparently, no analysis & ablation has been done by the authors
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