Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Wed. reading group Presenter: Yong-Min Shin yongminshin.simple.ink

Dent et al., Vector Neurons: A General Framework for SO(3)-Equivariant Networks, ICCV'21

산과학공학) \Xi MIDaSLAB

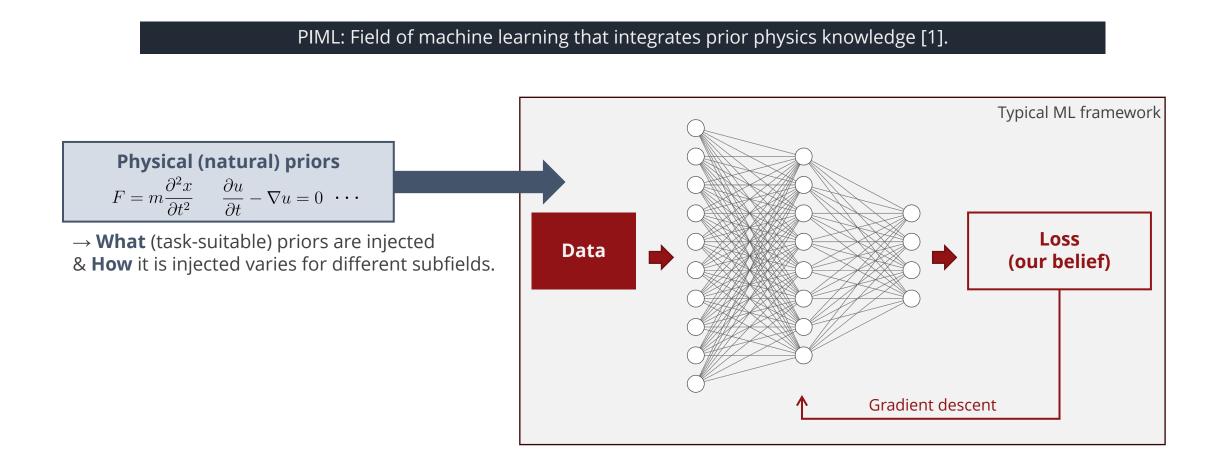
18th Oct. 2023

1. Simple survey on ¹PIML 2. Understanding ²VNN

Objective for the talk

¹VNN: Vector neural networks ²PIML: Physics-informed machine learning

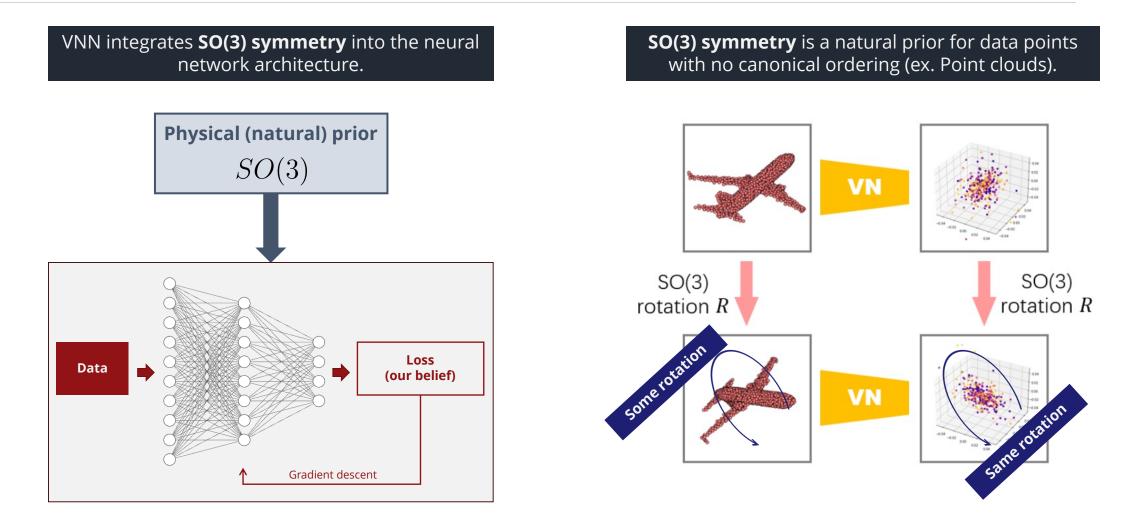
¹VNNs is part of the field of ²PIML, a broad area of ML that integrates prior physics knowledge into neural network models.



¹VNNs is part of the field of ²PIML, a broad area of ML that integrates prior physics knowledge into neural network models.

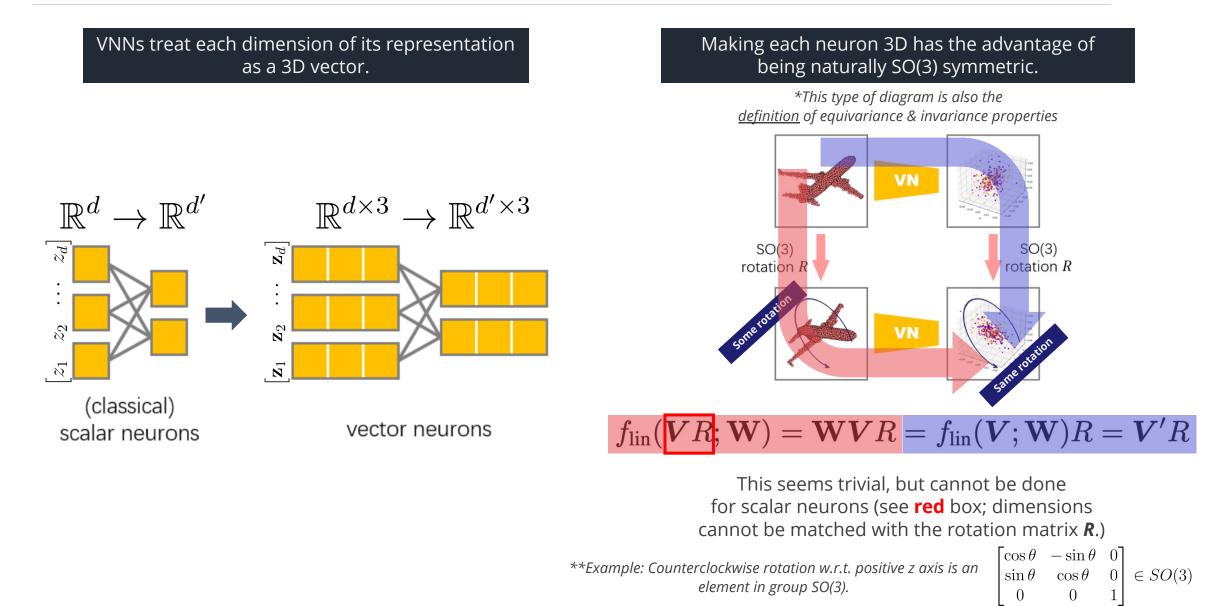
PINN (Physics-informed neural networks)	Neural networks that encode model equations (e.g., PDE) [1] Typically, PDEs are injected through the loss function	(Raissi et al., 2019) [2
PICV (Physics-informed computer vision)	PIML specifically dedicated to CV models and applications (e.g., Imaging, super-resolution, segmentation) [3]	(Yuan et al., 2021) [4
PIGL (Physics-informed graph learning)	PIML for graph learning (e.g., molecular representation, dynamic particle simulation) [2]	(Sanchez-Gonzalez e al., 2020) [5]
Operator learning	Using neural networks to learn mappings between infinite dimensional function spaces [6]	DeepONets [7] & FNOs [8]
l networks med machine learning ntific machine learning through phy ics-informed neural networks: A dec hysics-informed computer vision: A	dimensional function spaces [6] vsics-informed neural networks: Where we are and what's next. J. Sci. Comput. 92(3): 88 (2022) ep learning framework for solving forward and inverse problems involving nonlinear partial differenti review and perspectives, arXiv (2023) 3D Human Pose Estimation, CVPR 2021	FNOs [8]

¹VNNs is part of the field of ²PIML, a broad area of ML that integrates prior physics knowledge into neural network models.



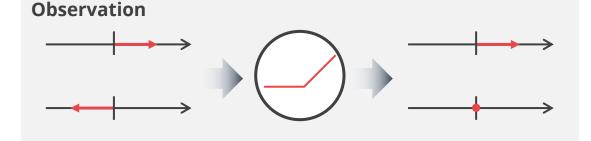
¹VNN: Vector neural networks ²PIML: Physics-informed machine learning Right figure: Deng et al., Vector neurons: A general framework for SO(3)-equivariant networks, ICCV 2021

VNNs expand all neurons as a 3D vector, which produces SO(3) rotation equivariant linear layers.

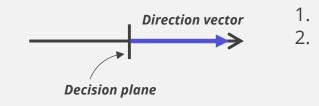


VNNs also provide a generalized ReLU function that is compatible with 3D neurons while being SO(3) equivariant.

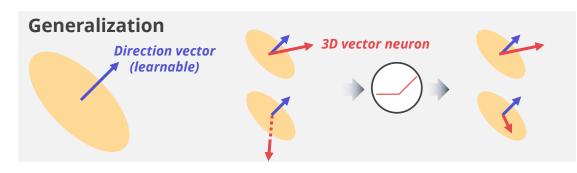
A classical generalization procedure: Observation \rightarrow Abstraction \rightarrow Generalization.



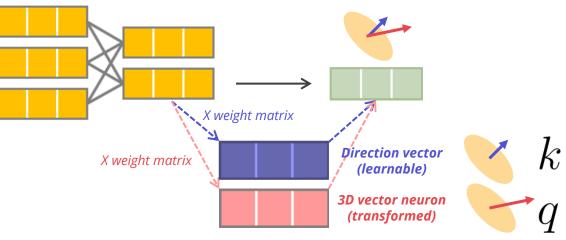
Abstraction: How to decide when to 'clip'?



 A *decision plane* is set
Vectors 'under' the decision plane gets *projected to the plane*



Straightforward calculation shows that the new ReLU is rotation equivariant.



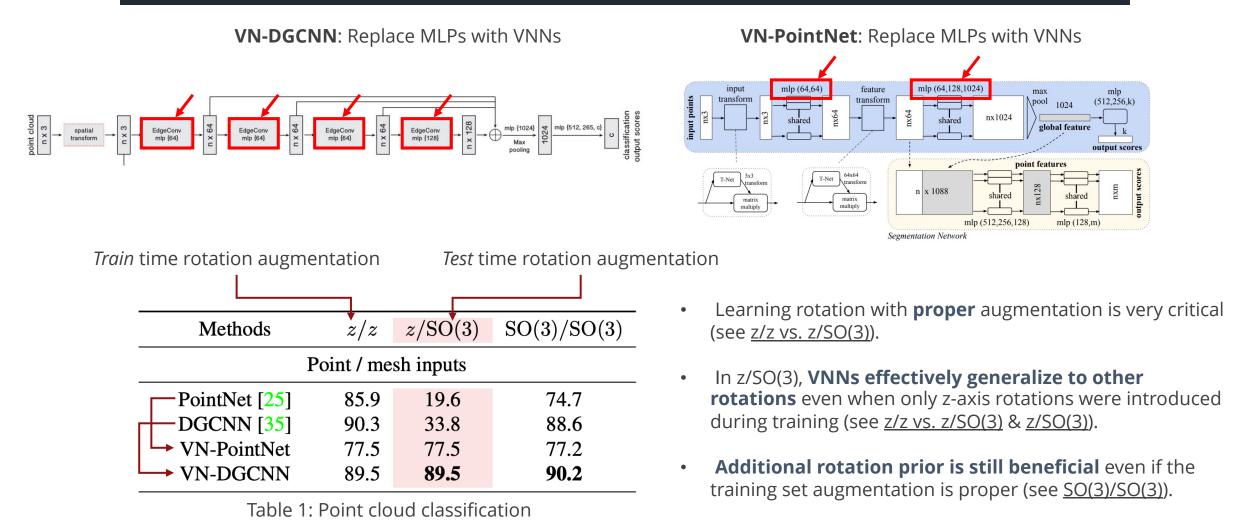
We then define the output VN as:

$$\boldsymbol{v}' = \begin{cases} \boldsymbol{q} & \text{if } \langle \boldsymbol{q}, \boldsymbol{k} \rangle \geqslant 0\\ \boldsymbol{q} - \langle \boldsymbol{q}, \frac{\boldsymbol{k}}{\|\boldsymbol{k}\|} \rangle \frac{\boldsymbol{k}}{\|\boldsymbol{k}\|} & \text{otherwise,} \end{cases}$$
$$\langle \boldsymbol{q}\boldsymbol{R}, \boldsymbol{k}\boldsymbol{R} \rangle = \langle \boldsymbol{q}, \boldsymbol{k} \rangle$$
$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \end{bmatrix}$$

*Think of the previous example element of SO(3): $\begin{vmatrix} \cos \theta & \sin \theta & \cos \theta \\ 0 & 0 & 1 \end{vmatrix} \in SO(3)$

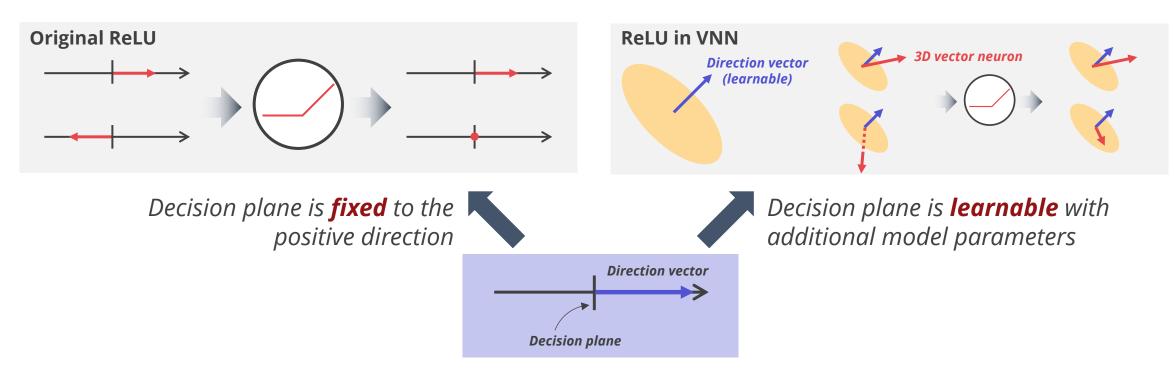
VNNs expand all neurons as a 3D vector, which produces SO(3) rotation equivariant layers.

By replacing linear layers (effectively, MLPs), it is used in other architectures as well.



Upper left figure: Wang et al., Dynamic graph CNN for learning on point clouds, ACM Tran. Graph., 38(5):1-12 (2019) Lower right figure: Qi et al., PointNet: Deep learning on point sets for 3D classification and segmentation, CVPR 2017 Lower left table: Deng et al., Vector neurons: A general framework for SO(3)-equivariant networks, ICCV 2021

Design choice of learnable decision boundaries is not warranted and requires further discussion.



- Previous neural networks were just fine with fixed decision planes: Do we really need learnable decision planes?
- Can we fix the direction vector to a trivial one (i.e., [1, 1, 1]) and still get the same results?
- Can we even set octant-based activation regions? (May need to perform multiple procedures in parallel)
- Apparently, no analysis & ablation has been done by the authors

Besides this point, VNN is a solid research with good practical implications.

Bottom right image: https://www.youtube.com/watch?app=desktop&v=5sJdfciNM20

10

- VNNs is a PIML research that incorporates SO(3) symmetry into neural networks
- Core idea: Represent each neuron as 3D vectors
- Design of compatible ReLUs and other techniques makes the model very applicable
- Mainly used as a building block for other architectures