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1. Simple survey on 'PIML 2. Understanding 2VNN

Objective for the talk

LVNN: Vector neural networks
“PIML: Physics-informed machine learning



VNN is part of the field of 2PIML, a broad area of ML that integrates prior physics

knowledge into neural network models.

PIML: Field of machine learning that integrates prior physics knowledge [1].
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LVNN: Vector neural networks
PIML: Physics-informed machine learning
[1] Meng et al., When physics meets machine learning: A survey of physics-informed machine learning, arXiv (2022)




VNN is part of the field of 2PIML, a broad area of ML that integrates prior physics
knowledge into neural network models.

PIML includes various subfields, including PINN, PICV, PIGL, Operator learning etc.

PINN
(Physics-informed
neural networks)

Neural networks that encode model equations (e.g., PDE) [1]

Typically, PDEs are injected through the loss function (Raissi etal,, 2019) [2]

PICV
(Physics-informed
computer vision)

PIML specifically dedicated to CV models and applications (e.g.,

[maging, super-resolution, segmentation) [3] (Yuan etal,, 2021) [4]

PIGL

o PIML for graph learning (e.g., molecular representation, (Sanchez-Gonzalez et
(Physics-informed : : . .
. dynamic particle simulation) [2] al., 2020) [5]
graph learning)
Operator learnin Using neural networks to learn mappings between infinite DeepONets [7] &
P g dimensional function spaces [6] FNOs [8]

1VNN: Vector neural networks

PIML: Physics-informed machine learning
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VNN is part of the field of 2PIML, a broad area of ML that integrates prior physics
knowledge into neural network models.

VNN integrates SO(3) symmetry into the neural SO(3) symmetry is a natural prior for data points

network architecture. with no canonical ordering (ex. Point clouds).

Physical (natural) prior
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LVNN: Vector neural networks
PIML: Physics-informed machine learning
Right figure: Deng et al., Vector neurons: A general framework for SO(3)-equivariant networks, ICCV 2021



VNNs expand all neurons as a 3D vector,
which produces SO(3) rotation equivariant linear layers.

Making each neuron 3D has the advantage of

VNNs treat each dimension of its representation
as a 3D vector.

being naturally SO(3) symmetric.
*This type of diagram is also the
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Left figure: Deng et al., Vector neurons: A general framework for SO(3)-equivariant networks, ICCV 2021

**Example: Counterclockwise rotation w.r.t. positive z axis is an

definition of equivariance & invariance properties

SO(3) SO(3)
rotation R

rotation R

flin(@; W)=WVR= fiu(V;W)R=V'R

This seems trivial, but cannot be done
for scalar neurons (see red box; dimensions

cannot be matched with the rotation matrix R.)
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VNNs also provide a generalized ReLU function that
is compatible with 3D neurons while being SO(3) equivariant.

A classical generalization procedure:

Straightforward calculation shows that the new
Observation — Abstraction — Generalization.

ReLU is rotation equivariant.
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Direction vector 1. Adecision plane is set (transformed) — q
> 2. Vectors'under’ the
/" decision plane gets We then define the output VN as:
Decision plane projected to the plane

) {q if (g, k) > 0
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VNNs expand all neurons as a 3D vector,
which produces SO(3) rotation equivariant layers.

By replacing linear layers (effectively, MLPs), it is used in other architectures as well.

VN-DGCNN: Replace MLPs with VNNs VN-PointNet: Replace MLPs with VNNs
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Segmentation Network
Train time rotation augmentation Test time rotation augmentation
+ Il « Learning rotation with proper augmentation is very critical
Methods z/z z/SO(3) SO(3)/SO(3) (see z/z vs. 2/SO(3)).

Point / mesh inputs - [h z/SO(3), VNNs effectively generalize to other

— PointNet [25 85.9 19.6 74.7 rotations even when only z-axis rotations were introduced
DGCNN [35] 90.3 33.8 88.6 during training (see z/z vs. z/SO(3) & z/SO(3)).
—> VN-PointNet 77.5 77.5 77.2
> VN-DGCNN 89.5 89.5 90.2 - Additional rotation prior is still beneficial even if the

training set augmentation is proper (see SO(3)/SO(3)).

Table 1: Point cloud classification

Upper left figure: Wang et al., Dynamic graph CNN for learning on point clouds, ACM Tran. Graph., 38(5):1-12 (2019)
Lower right figure: Qi et al,, PointNet: Deep learning on point sets for 3D classification and segmentation, CVPR 2017
Lower left table: Deng et al., Vector neurons: A general framework for SO(3)-equivariant networks, ICCV 2021



Design choice of learnable decision boundaries is not warranted
and requires further discussion.

Original ReLU ReLU in VNN
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« Previous neural networks were just fine with fixed decision planes: Do we really need learnable decision planes?

y

« Can we fix the direction vector to a trivial one (i.e., [1, 1, 1]) and still get the same results? TV

—
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- Can we even set octant-based activation regions? (May need to perform multiple procedures in parallel) N 2

« Apparently, no analysis & ablation has been done by the authors I

Besides this point, VNN is a solid research with good practical implications.

Bottom right image: https://www.youtube.com/watch?app=desktop&v=5s]dfciNM20



Takeaway messages

VNN is a PIML research that incorporates SO(3) symmetry into neural networks
Core idea: Represent each neuron as 3D vectors

Design of compatible ReLUs and other techniques makes the model very applicable

Mainly used as a building block for other architectures

Thank you!

10



