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Abstract
As one of popular quantitative metrics to assess
the quality of explanation of graph neural networks
(GNNs), fidelity measures the output difference af-
ter removing unimportant parts of the input graph.
Fidelity has been widely used due to its straight-
forward interpretation that the underlying model
should produce similar predictions when features
deemed unimportant from the explanation are re-
moved. This raises a natural question: “Does fi-
delity induce a global (soft) mask for graph prun-
ing?” To solve this, we aim to explore the potential
of the fidelity measure to be used for graph prun-
ing, eventually enhancing the GNN models for bet-
ter efficiency. To this end, we propose Fidelity−-
inspired Pruning (FiP), an effective framework to
construct global edge masks from local explana-
tions. Our empirical observations using 7 edge
attribution methods demonstrate that, surprisingly,
general eXplainable AI methods outperform meth-
ods tailored to GNNs in terms of graph pruning per-
formance.

1 Introduction
Alongside the recent popularity of graph neural networks
(GNNs) for graph-related tasks spanning across domains
from social network recommendations [Wu et al., 2023] to
molecular property predictions [Reiser et al., 2022], such
developments have resulted in an increasing demand in de-
veloping eXplainable AI (XAI) methods for GNN models.
While early work focused on extending various edge attribu-
tion methods into GNNs [Baldassarre and Azizpour, 2019;
Pope et al., 2019a] for explaining the underlying model’s be-
havior, many XAI methods specifically designed with GNN
models in mind have been since proposed [Yuan et al., 2023],
e.g., GNNExplainer [Ying et al., 2019]. More recent stud-
ies include FastDnX [Pereira et al., 2023], relying on training
SGC [Wu et al., 2019] as a simpler surrogate model to the
original GNN to extract relevant subgraphs. Although there
are alternative forms of explanations for GNN models, the
most prevalent one lies in the form of locally identifying the

∗Corresponding author.

most relevant subgraph structure to the GNN’s output for a
given node (i.e., the predicted node class).

One of the broader objectives of XAI is to ultimately en-
hance the performance based on the knowledge gained from
the explanation [Samek and Müller, 2019; Ali et al., 2023].
In this regard, even though the majority of XAI methods
of GNNs have successfully developed effective explanations,
studies on utilizing such explanations to improve the under-
lying GNN model have been vastly underexplored. In the
context of to graph datasets and GNN models, we focus on
the problem of graph pruning, which is related to increasing
the GNN model’s efficiency by removing unimportant edges
from the underlying graph. In other words, we are interested
in removing edges from the input graph altogether, guided by
edge attributions from XAI methods. If such utilization of
XAI is shown to be successful, then we are capable of natu-
rally boosting the efficiency of the underlying GNN model,
since the time complexity of most GNN models is directly
determined by the number of input edges [Wu et al., 2021].

Our work aims at making a connection between graph
pruning and fidelity, a quantitative metric that is often used
to assess the quality of (graph) explanations [Ancona et al.,
2017; Yeh et al., 2019; Yuan et al., 2023]. In the con-
text of GNN explanations, two variants of fidelity are com-
monly used. First, fidelity− measures the output difference
between two instances when the original input graph is used
and when the ‘unimportant’ parts (i.e., edges) are removed
from the input graph. The intuition behind this metric is quite
straightforward: if the explanation is valid, then structures
deemed less important (i.e., assigned low edge attribution
scores) should have less impact to the model’s output after
removal from the input. Second, for fidelity+, the definition
and interpretations are vice versa (i.e., removing ‘important’
parts). Revisiting on the intuition of the fidelity− measure, we
hypothesize that frequently removed edges, when measuring
fidelity−, may potentially be simply removed from the orig-
inal graph, provided that the quality of the given explanation
is good enough.

In this work, we investigate the feasibility of this hypothe-
sis, i.e., we are interested in using the intuition of fidelity itself
in the context of pruning the edges from the input graph. In
other words, we attempt to use the aggregate of given local
explanations for each node for pruning edges from the input
graph. Towards this end, we first provide a simple yet effec-
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Figure 1: The overview of the FiP framework.

tive framework, built upon any edge attribution methods, to
prune the input graph based on local explanations. Our em-
pirical results from 7 different edge attribution methods com-
prehensively demonstrate the feasibility of using XAI meth-
ods for graph pruning. Surprisingly, we find that explanation
methods that are specifically designed for GNN methods does
not perform well in graph pruning, although they have superb
performance in fidelity−. Our analysis further validates this
finding by explicitly visualizing pruned graphs, while empha-
sizing the necessity of developing a more sophisticated aggre-
gation method.

2 Related Work
Fidelity. The fidelity metric, i.e., the measurement on the
subset of input features highlighted by the explanation for the
actual relevance to the model, has been acknowledged as one
of the core properties for explanation [Yeh et al., 2019]. In
GNN explanations, two variants, i.e., fidelity+ and fidelity−,
are widely used depending on the unimportant/important part
to be removed from the input [Yuan et al., 2023]. Although
the fidelity measures are empirical measurements, theoretical
analysis on its robustness [Agarwal et al., 2022; Zheng et al.,
2023] has also been performed.

Graph pruning. Removing irrelevant edges from the un-
derlying graph is a common strategy for reducing the compu-
tation complexity of the GNN models, as the complexity is
known to be proportional to the number of edges [Chiang et
al., 2019]. Different ways to identify such irrelevant edges,
including training a separate neural network [Zheng et al.,
2020], using effective resistance measures [Srinivasa et al.,
2020; Liu et al., 2023b] and using graph lottery ticket hy-
pothesis [Liu et al., 2023a], were presented.

Our work focuses on the unique task of utilizing the intu-
ition of the fidelity measurement on graph explanations to be
used to prune edges from the input graph. To the best of our
knowledge, [Naik et al., 2024] lies in a similar objective to
our study; however, it focuses on providing additional node
features as a result.

3 Methodology
3.1 Basic Notations and Problem Settings
We denote an undirected and unweighted graph as G =
(V, E , X,A), where V is the set of nodes, E ⊆ V × V is

the set of edges, X ∈ R|V|×d is the node feature matrix, and
A : E → R maps each edge in E to a real number (represent-
ing the set of edge weights or attributions). Also, we denote
the set of neighbors for node v as Nv . We focus on node
classification, where a set of classes C = {1, ..., c} are given.
Then, we denote the one-hot label matrix Y ∈ {0, 1}|V|×|C|,
where Yv,: = yv is the ground-truth label for node v. We as-
sume that we are given a pre-trained L-layered GNN model
f , which produces a prediction Ŷ ∈ R|V|×|C|.

We consider a GNN explanation method Φ that takes a tar-
get node v, a target output t ∈ C as input and assigns a non-
negative edge attribution value to a given edge ei,j on the
GNN model, i.e., Φ(ei,j ; v, t) := ϕt

v(i, j) ∈ R. We set t as
the predicted class of v unless otherwise stated.1 By collect-
ing the edge attribution values ϕt

v(i, j) for node v, we can
construct a soft mask over the input graph, denoted as Gϕt

v .

3.2 Fidelity−-inspired Pruning Framework
To utilize the local explanations for graph pruning, we pro-
pose Fidelity−-inspired Pruning, FiP, a simple yet effective
framework that aggregates the edge attribution scores and cre-
ates a global edge mask (see Figure 1). The step-by-step de-
scription of FiP is as follows:

1. Explanations (i.e., local soft edge masks Gϕt
v ) for each

target node (yellow nodes in the figure) obtained by a
specific edge attribution method are taken as input.

2. The local soft edge masks Gϕt
v are aggregated over all

v ∈ V via summing or averaging the edge attributions to
generate Gϕ (i.e., turning ϕt

v(i, j) into a global soft edge
mask ϕ(i, j)).

3. Hard edge masks are generated via discarding edges
with the lowest aggregated edge attribution scores
ϕ(i, j).

We can expect that the performance gradually decreases
when we prune more edges (eventually resulting in informa-
tion loss of the input), but a good global soft edge mask Gϕ

will assign a low score to noisy edges and a higher score
to edges that severely hurt the performance when removed.
Note that the process of FiP can be interpreted as a global ver-
sion of fidelity−, since both FiP and fidelity− discard unim-

1Although explanation methods often provide feature masks, we
focus on edge-wise explanations in this work.



Figure 2: Graph pruning performance of FiP for 7 edge attribution methods as well as a random baseline on 4 benchmark datasets. The grey
area indicates the performance of random attributions, and the dashed line indicate the test performance without any pruning.

portant edges in Gϕt
v or Gϕ. Although there may be more so-

phisticated methods to aggregate local edge attributions aside
summation and averaging them, we leave the design of such
methods as future work.

4 Empirical Observations
In this section, we evaluate the graph pruning performance of
FiP using various GNN explanation methods.

4.1 Basic Settings
In our experiments, we train a 2-layer GAT model [Velick-
ovic et al., 2018] on 4 benchmark datasets, BA-Shapes [Ying
et al., 2019], Cora, Citeseer, and Pubmed [Yang et al., 2016],
where the model achieves test performance of 0.9857, 0.8531,
0.7389, and 0.8056, respectively. As mentioned, we only con-
sider average or summation when aggregating local edge at-
tributions in FiP.

4.2 Explanation Methods
We adopt the following seven edge attribution methods com-
monly used in the literature.

Attention (Att). The edge attention weights are treated as
a proxy of edge attribution. We average the attention weights
over all layers, similarly as in [Ying et al., 2019; Sánchez-
Lengeling et al., 2020].

Saliency (SA). [Simonyan et al., 2014] is the absolute
value of the gradient with respect to the input.

Integrated Gradient (IG). [Sundararajan et al., 2017] cal-
culates an edge attribution score via approximating the inte-
gral of gradients of the model’s output with respect to the
input along the path from a baseline to the input.

Guided Backpropagation (GB). [Springenberg et al.,
2015] is similar to SA, except that the negative gradients are
clipped during backpropagation, basically focusing on fea-
tures with an excitation effect.
GNNExplainer (GNNEx). [Ying et al., 2019] is the most
widely used explanation method tailored to GNNs, where it
identifies a local subgraph most relevant to the model’s pre-
dictions by maximizing the mutual information.
PGExplainer (PGEx). [Luo et al., 2020] trains a separate
parameterized mask predictor to generate edge masks that
identify edges important to the prediction.
FastDnX (FDnX). [Pereira et al., 2023] is a recently pro-
posed method for explaining GNNs, where it basically relies
on a surrogate SGC model [Wu et al., 2019] to explain the
model’s behavior.

4.3 Experimental Results on Graph Pruning
We show the experimental results of using various explana-
tion methods in FiP with our findings. As our main result,
Figure 2 shows the test performance when we remove p%
of the edges with the lowest global soft edge mask Gϕ, where
p ∈ {5, 10, · · · , 100}. For comparison, we also show the per-
formance when we use random attributions (averaged over 10
independent trials), depicted as the grey area. From Figure 2,
we make the following observations:

• Overall, edge attribution methods reveal their potential
in edge pruning. For example, on BAShapes, we can
delete half of the edges using IG only with the perfor-
mance degradation of less than 4%.

• Despite being rare, there are cases where the accu-
racy after pruning outperforms the original test accuracy
(e.g., on Citeseer, 5% pruning with FastDnX by summa-
tion).
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Figure 3: Visualizations of graph pruning using different edge attribution methods by removing 50% of the edges from the original graph.

Method BAShapes Cora Citeseer Pubmed

Att 3.63/2.26 4.89/4.11 1.74/1.89 6.32/6.58
SA 2.42/1.58 2.58/2.47 1.89/2.11 2.21/2.11
IG 1.53/2.58 1.95/1.84 5.32/4.26 6.58/6.58
GB 3.84/3.68 2.16/2.26 4.42/5.05 5.16/5.42
GNNEx 5.11/7.42 7.42/7.95 7.68/7.79 7.26/6.74
PGEx 5.58/4.84 5.84/5.58 4.00/3.84 2.21/2.42
FDnX 5.32/6.16 4.53/4.42 4.68/4.53 3.16/3.05
Random 7.53/6.47 6.42/6.68 5.47/5.68 3.05/3.00

Table 1: Rank in performance averaged over 20 different pruning
percentages (average/summation).

Table 1 summarizes the rank in performance averaged over
20 different pruning cases for 7 edge attribution methods (as
well as a random baseline) on 4 benchmark datasets. Our
findings are as follows.

• The best edge attribution method for graph pruning tends
be one of Att, SA, and IG. This is quite unexpected, as
SA and IG are ‘general’ XAI methods (i.e., the ones not
tailored to GNNs). In a similar regard, GNNExplainer
tends to exhibit the worst performance for most of the
datasets.

• There are no significant differences between using sum-
mation and average for aggregating local edge attribu-
tions in FiP.

4.4 Visualizations of Graph Pruning
We observe the effect of using different edge attributions for
graph pruning by visualizing the resulting graphs. Figure 3
visualizes results on BA-Shapes for a specific target node
(yellow nodes) using FiP with summation. We choose BA-
Shapes since it is the only dataset that contains ground-truth
explanation edges (see blue arrows). Note that only ground-
truth explanation edges are meaningful in the sense that they
construct house-shapes (i.e., motifs), influencing the ground-
truth node labels included in the motif (dark blue and yellow
nodes). The remaining edges do not have any semantic mean-
ings and merely serve as a backbone structure of the graph.
By setting p = 50 (i.e., removing half of the edges), we ob-
serve the following:

• Edge attribution methods showing superior performance
on BA-Shapes (i.e., Att, SA, IG, and GB) tend to prune
edges that are not included in the ground-truth explana-
tion edges compared to GNNex, PGEx, and FDnX.

• Especially for Att and SA, the resulting graphs after
pruning tend to be less noisy and explainable.

Method BAShapes Cora Citeseer Pubmed

Att 4.06× 10−2 3.67× 10−2 2.23× 10−2 2.46× 100

SA 3.54× 10−7 2.21× 10−7 8.90× 10−8 2.46× 100

IG 6.25× 100 1.26× 100 5.68× 10−1 2.25× 100

GB 3.77× 100 1.42× 100 7.04× 10−1 2.40× 100

GNNEx 3.44× 10−7 2.14× 10−7 3.52× 10−1 2.46× 100

PGEx 3.83× 10−7 2.04× 10−2 7.11× 10−3 2.46× 100

FDnX 1.41× 10−1 1.77× 10−2 7.05× 10−3 2.46× 100

Table 2: Measurement of fidelity−.

4.5 Relationship with Fidelity Scores
We perform further analysis by measuring the average
fidelity− scores over all nodes in the graph for each edge at-
tribution method. In our setting, we measure fidelity− as the
average output (logit) difference between using the original
graph and a sparser graph as input, where the sparse graph
is generated by removing 50% of the edges with the lowest
edge attribution scores in Gϕ. Lower fidelity− indicates a
higher quality explanation for each node. Table 2 summarizes
the measurement of fidelity− scores for all edge attribution
methods and datasets. Here, we find that the fidelity− does
not necessarily translate to graph pruning performance. As
an example, GNNEx shows the best performance in fidelity−

for the Cora dataset; however, the average rank when using
GNNEx in FiP is 5.84 and 5.58 for average and summation
aggregation cases, respectively.

5 Discussion and Conclusion
In this work, we have empirically validated the feasibility
of using local edge attribution methods for edge pruning.
Our empirical analysis demonstrated that 1) local edge at-
tributions can be effectively used for graph pruning with
our FiP framework and 2) general XAI methods outperform
XAI methods tailored to GNN models. We believe that FiP
will not only improve efficiency but also eventually result in
sparser explanations, which makes manual inspection feasi-
ble [Pope et al., 2019b], as sparse explanations are gener-
ally considered to be more human-comprehensible [Yuan et
al., 2023; Funke et al., 2023]. Potential avenues of future
work include development of more sophisticated aggregation
methods as well as investigation of the relationship between
sparsity levels and human comprehensiveness on the expla-
nations.
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