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Time-Series Anomaly Detection
with Implicit Neural Representation
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Abstract

Detecting anomalies in multivariate time-series
data is essential in many real-world applications.
Recently, various deep learning-based approaches
have shown considerable improvements in time-
series anomaly detection. However, existing meth-
ods still have several limitations, such as long
training time due to their complex model designs
or costly tuning procedures to find optimal hy-
perparameters (e.g., sliding window length) for a
given dataset. In our paper, we propose a novel
method called Implicit Neural Representation-
based Anomaly Detection (INRAD). Specifically,
we train a simple multi-layer perceptron that takes
time as input and outputs corresponding values
at that time. Then we utilize the representation
error as an anomaly score for detecting anomalies.
Experiments on five real-world datasets demon-
strate that our proposed method outperforms other
state-of-the-art methods in performance, training
speed, and robustness.

1. Introduction

Time-series data is frequently used in various real-world
systems, especially in multivariate scenarios such as server
machines, water treatment plants, spacecraft, etc. Detecting
an anomalous event in such time-series data is crucial to
managing those systems (Su et al., 2019; Mathur & Tip-
penhauer, 2016; Hundman et al., 2018; Gupta et al., 2014;
Blazquez-Garcia et al., 2021). To solve this problem, several
classical approaches have been developed in the past (Fox,
1972; Zhang et al., 2005; Ma & Perkins, 2003; Liu et al.,
2008a). However, due to the limited capacity of their ap-
proaches, they could not fully capture complex, non-linear,
and high-dimensional patterns in the time-series data.

“Equal contribution 'Computational Science and Engi-
neering, Yonsei University, Seoul, South Korea. Kyeong-
Joong Jeong <jeongkj@yonsei.ac.kr>, Yong-Min Shin <jor-
dan3414@yonsei.ac.kr>.

Copyright 2022 by the authors.

“2021-09-08
11:59:59”

Input: Time (t) Output: Value (x;)
Figure 1: Implicit neural representation for multivariate
time-series data.

Recently, various unsupervised approaches employing deep
learning architectures have been proposed. Such works
include adopting architectures such as recurrent neural
networks (RNN) (Hundman et al., 2018), variational au-
toencoders (VAE) (Xu et al., 2018), generative adversar-
ial networks (GAN) (Li et al., 2019), graph neural net-
works (GNN) (Deng & Hooi, 2021), and combined architec-
tures (Zong et al., 2018; Su et al., 2019; Shen et al., 2020;
Audibert et al., 2020; Park et al., 2018). These deep learning
approaches have brought significant performance improve-
ments in time-series anomaly detection. However, most
deep learning-based methods have shown several down-
sides. First, they require a long training time due to complex
calculations, hindering applications where fast and efficient
training is needed. Second, they need a significant amount of
effort to tune model hyperparameters (e.g., sliding window
size) for a given dataset, which can be costly in real-world
applications.

In our paper, we propose Implicit Neural Representation-
based Anomaly Detection (INRAD), a novel approach that
performs anomaly detection in multivariate time-series data
by adopting implicit neural representation (INR). Figure 1
illustrates the approach of INR in the context of multivariate
time-series data. Unlike conventional approaches where
the values are passed as input to the model (usually pro-
cessed via sliding window etc.), we directly input time to
a multi-layer perceptron (MLP) model. Then the model
tries to represent the values of that time, which is done by
minimizing a mean-squared loss between the model output
and the ground truth values. In other words, we train a MLP
model to represent the time-series data itself. Based on our



observation that the INR represents abnormal data relatively
poorly compared to normal data, we use the representation
error as the anomaly score for anomaly detection. Adopt-
ing such a simple architecture design using MLP naturally
results in a fast training time. Additionally, we propose a
temporal encoding technique that improves efficiency for
the model to represent time-series data, resulting in faster
convergence time.

In summary, the main contributions of our work are:

* We propose INRAD, a novel time-series anomaly de-
tection method that only uses a simple MLP which
maps time into its corresponding value.

* We introduce a temporal encoding technique to repre-
sent time-series data efficiently.

* We conduct extensive experiments while using the
same set of hyperparameters over all five real-world
benchmark datasets. Our experimental results show
that our proposed method outperforms previous state-
of-the-art methods in terms of not only accuracy, but
also training speed in a highly robust manner.

2. Related Work

In this section, we review previous works for time-series
anomaly detection and implicit neural representation.

2.1. Time-Series Anomaly Detection

Since the first study on this topic was conducted by (Fox,
1972), time-series anomaly detection has been a topic of
interest over the past decades (Gupta et al., 2014; Blazquez-
Garcia et al., 2021). Traditionally, various methods, in-
cluding autoregressive moving average (ARMA) (Galeano
et al., 2006) and autoregressive integrated moving average
(ARIMA) model (Zhang et al., 2005)-based approaches, one-
class support vector machine-based method (Ma & Perkins,
2003) and isolation-based method (Liu et al., 2008a) have
been widely introduced for time-series anomaly detection.
However, these classical methods either fail to capture com-
plex and non-linear temporal characteristics or are very
sensitive to noise, making them infeasible to be applied on
real-world datasets.

Recently, various unsupervised deep learning-based ap-
proaches have successfully improved performance in com-
plex multivariate time-series anomaly detection tasks. As
one of the well-known unsupervised models, autoencoder
(AE)-based approaches (Sakurada & Yairi, 2014) capture the
non-linearity between variables. Recurrent neural networks
(RNNs) are a popular architecture choice used in various
methods (Hundman et al., 2018; Malhotra et al., 2016) for
capturing temporal dynamics of time series data. Generative

models are also used in the literature, namely generative
adversarial networks (Li et al., 2019) and variational autoen-
coder (VAE)-based approaches (Xu et al., 2018). Graph
neural network-based approach (Deng & Hooi, 2021) is
also proposed to capture the complex relationship between
variables in the multivariate setting. Furthermore, method-
ologies combining multiple architectures are also proposed,
such as AE with the Gaussian mixture model (Zong et al.,
2018) or AE with GANs (Audibert et al., 2020), stochastic
RNN with a planar normalizing flow (Su et al., 2019), deep
support vector data description (Ruff et al., 2018) with di-
lated RNN (Chang et al., 2017), and VAE with long short
term memory (LSTM) networks (Park et al., 2018).

Despite remarkable improvements via those above deep
learning-based approaches, most of the approaches produce
good results at the expense of training speed and generaliz-
ability. Such long training time with costly hyperparameter
tuning for each dataset results in difficulties applying to
practical scenarios (Audibert et al., 2020).

2.2. Implicit Neural Representation

Recently, implicit neural representations (or coordinate-
based representations) have gained popularity, mainly in
3D deep learning. Generally, it trains a MLP to represent a
single data instance by mapping the coordinate (e.g., zyz-
coordinates) to the corresponding values of the data. This
approach has been proven to have expressive representation
capability with memory efficiency. As one of the well-
known approaches, occupancy networks (Mescheder et al.,
2019) train a binary classifier to predict whether a point
is inside or outside the data to represent. DeepSDF (Park
et al., 2019) directly regresses a signed distance function
that returns a signed distance to the closest surface when
the position of a 3D point is given. Instead of occupancy
networks or signed distance functions, NeRF (Mildenhall
et al., 2020) proposes to map an MLP to the color and den-
sity of the scene to represent. SIREN (Sitzmann et al., 2020)
proposes using sinusoidal activation functions in MLPs to
facilitate high-resolution representations. Since then, vari-
ous applications, including view synthesis (Martin-Brualla
et al., 2021) and object appearance (Saito et al., 2019) have
been widely studied.

However, the application of INR to time-series data has
been relatively underdeveloped. Representation of time-
varying 3D geometry has been explored (Niemeyer et al.,
2019), but they do not investigate multivariate time-series
data. Although SIREN (Sitzmann et al., 2020) showed the
capability to represent audio, its focus was limited to the
high-quality representation of the input signals. To the best
of our knowledge, this is the first work to use INR to solve
the problem of time-series anomaly detection.



3. INRAD Framework

In this section, we define the problem that we aim to solve,
and then we present our proposed INRAD based on the
architecture proposed by (Sitzmann et al., 2020). Next, we
describe our newly designed temporal encoding technique
in detail. Finally, we describe the loss function to make
our model represent input time signals and describe the
anomaly score used during the detection procedure. Figure 3
describes the overview of the proposed method.

3.1. Problem Statement

In this section, we formally state the problem of multivariate
time-series anomaly detection as follows.

We first denote multivariate time-series data as X =
{(t1,%¢, ) (t2, Xty )y (3, Xt5)s vy (EN, Xty )}, Where t; de-
notes a timestamp, x;, denotes corresponding values at
the timestamp, and N denotes the number of observed
values. As we focus on multivariate data, x;, is a d-
dimensional vector representing multiple signals. The goal
of time-series anomaly detection is to output a sequence,
Y = {Ut,, Yto, Ytg» s Ytn 1> Where y, € {0, 1} denotes the
abnormal or normal status at ¢;. In general, 1 indicates the
abnormal state while O indicates normal state.

3.2. Implicit Neural Representation of Time-Series
Data

To represent a given time-series data, we adopt the archi-
tecture proposed by (Sitzmann et al., 2020), which lever-
ages periodic functions as activation functions in the MLP
model, resulting in a simple yet powerful model capable of
representing various signals, including audio. After prepro-
cessing the time coordinate input via an encoding function
¢, our aim is to learn a function f that maps the encoded
time ¢(¢;) to its corresponding value x;, of the data.

We can describe the MLP f by first describing each fully-
connected layer and stacking those layers to get the fi-
nal architecture. Formally, the [th fully-connected layer
fi with hidden dimension m; can be generally described
as fl(hlfl) = J(Wlh171 + bl), where h;_; € R™-?
represents the output of the previous layer f;_1, W; €
R™*mi-1 and b; € R™ are learnable weights and bi-
ases, respectively, and o is a non-linear activation func-
tion. Here, sine functions are used as o, which enables
accurate representation capabilities of various signals. In
practice, a scalar wy is multiplied such that the /th layer is
fi = sin(wg - Wih;_1 + by), in order for the input to span
multiple periods of the sine function.

Finally, by stacking a total of L layers with an additional
linear transformation at the end, we now have our model

f(@(t:)) = W(fre fr—1o- -0 f1)(¢(t:)) + b which maps

the input ¢; to the output f(4(t;)) € R

3.3. Temporal Encoding

As INR has been mainly developed to represent 2D or 3D
graphical data, encoding time coordinate for INR has rarely
been studied. Compared to graphical data, which the num-
ber of points in each dimension is fairly limited to around
thousands, the number of timestamps is generally much
larger and varies among different datasets. Also, training
and test data need to be considered regarding their chrono-
logical order (training data usually comes first). These ob-
servations with a real-world time-series data motivate us to
design a new encoding strategy such that 1) the difference
between ¢(t;) and ¢(t;41) is not affected by the length of
the time sequence 2) chronological order between train and
test data is preserved after encoding 3) timestamps from
real-world data are naturally represented using its standard
time scale rather than relying on the sequential index of
time-series data. These desired properties are not satisfied
with the encoding strategy applied in (Sitzmann et al., 2020)
(which we call vanilla encoding), where it normalizes coor-
dinates in the range [—1, 1].

We now describe our temporal encoding, a simple yet ef-
fective method which satisfies conditions mentioned above.
The key idea is to directly utilize the timestamp data present
in the time-series data (we can assign arbitrary timestamps
if none is given). We first represent ¢; into a 6-dimensional
vector k = [kyr, kmons Kdays Khrs Kmin, ksec] € RS, each
dimension representing year, month, day, hour, minute, and
second respectively. Here, ky,, kmon, Fdays khrs Kmin are
all positive integers, while k.. € [0,60). Note that this can
flexibly change depending on the dataset. For instance, if the
timestamp does not include minute and second information,
we use a 4-dimensional vector (i.e., [kyr, Emon; Kday: knr]
and kyp,, € [0,24)).

Next, we normalize the vectorized time information. With a
pre-defined year k;,., we first set [k; ., 1,1,0,0,0] (January
1st 00:00:00 at year k’y,,) as [-1,-1,-1,-1,-1,-1]. Now, let us
represent the current timestamp of interest as k°*"". We
normalize the j-th dimension of the current timestamp k™"
by the following linear equation:

where n§""" is the jth dimension of the normalized vector

n““" ¢ RS and I is an indicator function. For the values of
Ni, we set N2 = 12,N3 = 31,N4 = 24,N5 = GO,NG =
60 to match the standard clock system. We assume that
N is pre-defined by the user. In short, we define a tempo-
ral encoding function ¢ that transforms a scalar ¢ into n;
(¢ : t; = n;). In our method, we will by default use this
temporal encoding unless otherwise stated.
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Figure 2: The overview of the proposed Implicit Neural Representation-based Anomaly Detection (INRAD). (a) From the
given time-series data, we perform temporal encoding and represent time as a real-valued vector. (b) An MLP using periodic
activation functions represents the given data by mapping the time processed by temporal encoding to the corresponding
values. (c) After the model converges, we calculate the representation error and use this as the anomaly score for detection.

3.4. Loss Function

As we aim the model to represent the input time-series
data, we compare the predicted value at each timestamp
t;to its ground-truth value x,. Therefore, we minimize the
following loss function:

1 n
L= [, — flot)IP )
i=1
where || - || indicates the 12 norm of a vector.

3.5. Anomaly Score and Detection Procedure

Our proposed representation error-based anomaly detec-
tion strategy is built on the observation that values at an
anomalous time are difficult to represent, resulting in rela-
tively high representation error. By our approach described
above, the given data sequence X is represented by an MLP
function f. We now perform anomaly detection with this
functional representation by defining the representation er-
ror as the anomaly score. Formally, the anomaly score a;, at
a specific timestamp ¢; is defined as a;, = |x¢, — f(o(%;))],
where | - | indicates the 11 norm of a vector. Anomalies can
be detected by comparing the anomaly score a;;, with the
pre-defined threshold 7.

In our approach, we first use the training data to pre-train our
model f and then re-train the model to represent the given
test data to obtain the representation error as an anomaly
score for the detection.

Datasets Train Test Features ‘ Anomalies
SMD | 708405 | 708420 | 28x38 4.16 (%)
SMAP | 135183 | 427617 | 55x25 13.13 (%)
MSL 58317 73729 2755 10.72 (%)
SWaT | 496800 | 449919 51 11.98 (%)
WADI | 1048571 | 172801 123 5.99 (%)

Table 1: Statistics of the datasets used in our experiments.

4. Experiments

In this section, we perform various experiments to answer
the following research questions:

* RQ1: Does our method outperform various state-of-
the-art methods, even with a fixed hyperparameter set-
ting?

* RQ2: How does our proposed temporal encoding af-
fect the performance and convergence time?

* RQ3: Does our method outperform various state-of-
the-art methods in terms of training speed?

* RQ4: How does our method behave in different hyper-
parameter settings?



4.1. Dataset

We use five real-world benchmark datasets, SMD (Su et al.,
2019), SMAP & MSL (Hundman et al., 2018), SWaT &
WADI (Mathur & Tippenhauer, 2016), for anomaly detec-
tion for multivariate time-series data, which contain ground-
truth anomalies as labels. Table 1 summarizes the statistics
of each dataset, which we further describe its detail in the
supplementary material.

In our experiments, we directly use timestamps included
in the dataset for SWAT and WADI. We arbitrarily assign
timestamps for the other three datasets since no timestamps
representing actual-time information are given.

4.2. Baseline methods

We demonstrate the performance of our proposed method,
INRAD, by comparing with the following six anomaly de-
tection methods:

e IF (Liu et al., 2008a): Isolation forests (IF) is the most
well-known isolation-based anomaly detection method,
which focuses on isolating abnormal instances rather
than profiling normal instances.

¢ LSTM-VAE (Park et al., 2018): LSTM-VAE uses a
series of connected variational autoencoders and long-
short-term-memory layers for anomaly detection.

* DAGMM (Zong et al., 2018): DAGMM is an unsu-
pervised anomaly detection model which utilizes an
autoencoder and the Gaussian mixture model in an
end-to-end training manner.

* OmniAnomaly (Su et al., 2019): OmniAnomaly em-
ploys a stochastic recurrent neural network for multi-
variate time-series anomaly detection to learn robust
representations with a stochastic variable connection
and planar normalizing flow.

e USAD (Audibert et al., 2020): USAD utilizes an
encoder-decoder architecture with an adversely train-
ing framework inspired by generative adversarial net-
works.

¢ THOC (Shen et al., 2020): THOC combines a dilated
recurrent neural network (Chang et al., 2017) for ex-
tracting multi-scale temporal features with the deep
support vector data description (Ruff et al., 2018).

4.3. Evaluation Metrics

We use precision (P), recall (R), Fl-score (F1) for evalu-
ating time-series anomaly detection methods. Since these
performance measures depend on the way threshold is set
on the anomaly scores, previous works proposed a strategy

such as applying extreme value theory (Siffer et al., 2017),
using a dynamic error over a time window (Hundman et al.,
2018). However, not all methodologies develop a mecha-
nism to select a threshold in different settings, and many
previous works (Audibert et al., 2020; Su et al., 2019; Xu
et al., 2018) adopt the best F1 score for performance compar-
ison, where the optimal global threshold is chosen by trying
out all possible thresholds on detection results. We also use
the point-adjust approach (Xu et al., 2018), widely used in
evaluation (Audibert et al., 2020; Su et al., 2019; Shen et al.,
2020). Specifically, if any point in an anomalous segment is
correctly detected, other observations in the segment inside
the ground truth are also regarded as correctly detected.

Therefore, we adopt the best Fl-score (short F1 score
hereafter) and the point-adjust approach for evaluating the
anomaly detection performance to directly compare with
the aforementioned state-of-the-art methods.

4.4. Hyperparameters and Experimental Setup

To show the robustness of our proposed method, we conduct
experiments using the same hyperparameter setting for all
benchmark datasets.

The details of the experimental setting are as follows. For
the model architecture, we use a 3-layer MLP with sinu-
soidal activations with 256 hidden dimensions each (re-
fer to Figure 3(b)). Following (Sitzmann et al., 2020),
we set wy = 30 except for the first layer, which is
set to 3000. During training, we use the Adam opti-
mizer (Kingma & Ba, 2015) with a learning rate of 0.0001
and (1, 82) = (0.9,0.99). Additionally, we use early stop-
ping with patience 30. Our code and data are released at
https://github.com/KyeongJoong/INRAD

4.5. RQ 1. Performance Comparison

Table 2 shows the performance comparison results of
our proposed method INRADy,, and its variants, along
with other baseline approaches on five benchmark datasets.
We use the reported accuracy values of baselines (except
THOC (Shen et al., 2020)) from the previous work (Audibert
et al., 2020), which achieves state-of-the-art performance in
the identical experimental setting with ours, such as datasets,
train/test split, and evaluation metrics. Note that results of
THOC on the WADI dataset are omitted due to an out-of-
memory issue.

Overall, our proposed INRADy,, consistently achieves the
highest F1 scores over all datasets. Especially, the perfor-
mance improvement over the next best method achieves
0.32 in terms of F1 score on the WADI dataset, where most
other approaches show relatively low performance. On other
datasets, we still outperform the second-best performance of
other baselines by 0.02 to 0.12. Considering that the single



| SMD SMAP MSL SWaT WADI
Method | P R FI | P R F | P R F | P R F | P R Fl
IF | 594 853 070 | 442 51.1 047 | 568 674 062|962 73.1 083 | 624 615 062
LSTM-VAE | 87.0 788 0.83 | 71.6 988 083 | 86.0 97.6 091 | 712 926 080 | 463 322 038
DAGMM | 67.3 845 075 | 633 998 078 | 756 98.0 0.85 | 829 767 0.80 | 22.3 198 021
OmniAnomaly | 98.1 944 096 | 759 97.6 085 | 91.4 889 090 | 722 983 0.83 [ 265 980 041
USAD | 93.1 944 096 | 770 983 0.86 | 88.1 979 093 | 987 740 085 | 645 322 043
THOC | 732 788 0.76 | 792 99.0 0.88 | 789 974 087 | 980 70.6 082 | - - -
INRADS,, | 947 978 096 | 80.0 99.3 0.89 | 93.6 98.1 096 | 969 887 093 | 602 670 0.63
INRAD,,, | 980 983 098 | 832 99.1 090 | 921 99.0 095 | 93.0 963 095 | 784 99.9 0.88
INRADyy | 980 98.6 098 | 840 994 091 | 904 990 095 | 964 917 094 | 77.1 665 0.71
INRADyyp+ | 950 964 095 | 826 993 090 | 91.7 987 095 | 842 847 084 | 724 728 073
INRADerp | 982 975 098 | 858 99.5 092 | 933 99.0 096 | 956 98.8 097 | 889 99.1 0.94

Table 2: Anomaly detection accuracy results in terms of precision(%), recall(%), and F1-score, on five real-world benchmark
datasets. INRADy,,, INRADy,,<, and INRAD er,, adopts the vanilla, vanilla®, and temporal encoding, respectively. Also,

INRADY,, and INRADfemlD
Method | SMD | SMAP | MSL
LSTM-VAE | 3.807 | 0.987 | 0.674
OmniAnomaly | 77.32 | 16.66 | 15.55
USAD | 0.278 | 0.034 | 0.029
THOC | 0.299 0.07 0.066
INRAD | 0.243 | 0.024 | 0.020

Table 3: Comparison of training time (sec) per epoch.

hyperparameter setting restriction is only applied for our
method, this shows that our approach can provide superior
performance in a highly robust manner in various datasets.

As we adopt the representation error-based detection strat-
egy, it is possible that our method detects anomalies without
training data by directly representing the test set. We hy-
pothesize that the test set already contains an overwhelming
portion of normal samples from which the model can still
learn temporal dynamics of normal patterns in the given
data without any complex model architectures (e.g., RNN
and its variants). To distinguish from the original method,
we denote this variant as INRADg, (¢ = ’van’ or "temp’ for
vanilla and temporal encoding, respectively), which we also
investigate its performance. We observe that both INRADY, |
and IN RADfemp generally achieves slightly inferior perfor-
mance t0 INRAD e, except for WADI. This result shows
that utilizing the training dataset has performance benefits,
especially when the training data is much longer than the

test data.

4.6. RQ 2. Effect of temporal encoding

We study the effect of our temporal encoding method by
comparing it with two encoding methods: vanilla and its
variant, vanilla*. Vanilla encoding normalizes the indices

indicates that the experiment was run on the cold-start setting with each encoding.

[1,2,---, M] of the training data to [—1, 1], and the indices
of the test data are also mapped to [—1,1]. On the other
hand, vanilla* encoding is derived from vanilla encoding to
preserve chronological order and unit interval of training
and test data after encoding by mapping indices of test data
to the range [1, c0), while keeping the difference between
neighboring encoding consistent with the training data. We
denote the variant using vanilla and vanilla* as INRAD,,,
and INRAD,,~, respectively.

Table 2 shows that INRADy, achieves slightly supe-
rior performance in general compared to INRADy,, and
INRADy,,-. However, when the length of the dataset be-
comes long, the performance of vanilla and vanilla* de-
grades significantly while temporal encoding remains at
0.94, as shown in the case of WADI. The performance gap
in WADI becomes even more significant in the case of cold-
start settings, which is 0.25.

Also, Figure 3 compares the convergence time for repre-
sentation of test data between INRAD,,,, INRAD,,,+, and
INRAD ¢ using MSL and SMAP dataset. The vanilla en-
coding shows the slowest convergence time, and the vanilla*
and our temporal encoding shows competitive results. This
result shows that representation of test data is learned faster
when time coordinates in training and test data are encoded
while preserving the chronological order. Overall, our tem-
poral encoding strategy achieves superior performance and
fast convergence compared to the vanilla encoding strategy.

4.7. RQ 3. Training speed comparison

Here, we study the training speed of INRADy¢y,, and com-
pare it to the other four baselines that show good perfor-
mance. Table 3 summarizes the results the training time per
epoch for INRAD e, along with other baseline methods on
three benchmark datasets. Specifically, the reported time is
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Figure 3: Convergence time (sec) comparison for different
encoding techniques.

the average time across all entities within each dataset (i.e.,
28 entities for SMD, 55 for SMAP, and 27 for MSL). The
results show that our method achieves the fastest training
time, mainly because our method only uses a simple MLP
for training without any additional complex modules (e.g.,
RNNS).

4.8. RQ 4. Hyperparameter sensitivity

In Figure 4, we test the robustness of INRAD e, by varying
different hyperparameters settings using the MSL dataset.
In our experiment, we change the patience in early stopping
in range {30, 60, 90, 120, 150}, size of hidden dimension in
range {32, 64,128,256, 512}, wy of the first layer in range
{30, 300, 3000, 30000, 300000}, and the number of layers
in range {1,2,3,4,5}. Figure 4a, 4b, and 4d shows that
INRAD:enmp achieves high robustness with varying hyperpa-
rameter settings. We see that the choice of wy also minimally
impacts INRADyey,, as in Figure 4c. This results suggests
that the MLP struggles to differentiate neighboring inputs
in the case where wy is extremely low.

5. Conclusion

In this paper, we proposed INRAD, a novel implicit neural
representation-based method for multivariate time-series
anomaly detection, along with a temporal encoding tech-
nique. Adopting a simple MLP, which takes time as in-
put and outputs corresponding values to represent a given
time-series data, our method detects anomalies by using the
representation error as anomaly score. Various experiments
on five real-world datasets show that our proposed method
achieves state-of-the-art performance in terms of accuracy
and training speed while using the same set of hyperparam-
eters. For future work, we can consider additional strategies
for online training in order to improve applicability in an
environment where prompt anomaly detection is needed.
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Figure 4: Performance of INRADiemp for MSL under various
hyperparameter settings.
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A. Baseline Implementation

We describe the implementation of the baseline methods used in our paper. Isolation forest (IF) (Liu et al., 2008b) is
implemented using the scikit-learn library, and we use the source code of THOC (Shen et al., 2020) given by authors. The
other baselines are downloaded from the following links:

¢ LSTM-VAE (Park et al., 2018):
https://github.com/Danyleb/Variational-Lstm-Autoencoder

* DAGMM (Zong et al., 2018):
https://github.com/tnakae/DAGMM

* OmniAnomaly (Su et al., 2019):
https://github.com/NetManAIOps/OmniAnomaly

e USAD (Audibert et al., 2020):
https://github.com/robustml-eurecom/usad

B. Vanilla Encoding

In this section, we describe the encoding strategy in (Sitzmann et al., 2020) which we call vanilla encoding in our main
paper. Let us assume that the given dataset has N timestamps with index i (i.e., X = {(t;,x;,)}}Y;). Also, denote the
vector of indices as i = [1,2,---, N],and 1 € R'*¥ as the one vector. Vanilla encoding plainly normalizes each indices i
to the range [—1, 1] by ipqive = (2/N) xi—1.

C. Detailed Setting of Temporal Encoding

In the case of SWaT and WADI datasets, we use the actual timestamps given in each dataset. On the other hand, in the case
of SMD, MSL, SMAP dataset that does not contain such information, we arbitrarily set the timestamps for each sample
starting from 2021-01-01 00:00:00” with one-minute intervals. We assume that the test data is directly after the end of the
timestamp in the training set.

Now we describe the details of the pre-defined k., and N1. We set k. as the year of the first timestamp in the training
set as we assume that our model will not encounter past information before the first sample in the training set. In the case of
SWAT and WADI, we set k;mr as 2015 and 2017, respectively, following the given timestamp information as we stated
earlier. For the other datasets, we set k. ... as 2021 as we set the first timestamp in the training set as ”2021-01-01 00:00:00".
Next, we set N1 by v + 1, where y indicates the difference between the year of the earliest and latest observed data. We

year
note that, however, these settings can be flexibly chosen for various settings.

D. Detailed Description of the Datasets

SMD (Su et al., 2019) is a 5-week-long public dataset collected from a large Internet company containing data from 28
server machines, each one monitored by 33 metrics. It is divided into two subsets of equal size, where the first half is
the training set and the second half is the testing set. SMAP and MSL (Hundman et al., 2018) are two real-world public
datasets, expert-labeled datasets from NASA. SMAP contains the data from 55 entities monitored by 25 metrics, and
MSL contains the data from 27 entities monitored by 55 metrics. SWaT (Mathur & Tippenhauer, 2016) is collected from
a scaled-down real-world industrial water treatment plant that produces filtered water. In SWaT, operational data under
normal circumstances are collected for 7 days, and operational data with attack scenarios are collected under 4 days.
In WADI (Mathur & Tippenhauer, 2016), operational data under normal circumstances are collected for 14 days, and
operational data with attack scenarios are collected under 2 days. This dataset is collected from the WADI testbed, an
extension of the SWaT testbed.



