publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2025

  1. AAAI
    Faithful and Accurate Self-Attention Attribution for Message Passing Neural Networks via the Computation Tree Viewpoint
    Yong-Min Shin, Siqing Li, Xin Cao, and Won-Yong Shin
    In AAAI, Feb 2025

2024

  1. IJCAIW
    On the Feasibility of Fidelity⁻ for Graph Pruning
    Yong-Min Shin, and Won-Yong Shin
    In IJCAI Workshop on Explainable Artificial Intelligence (XAI), Aug 2024
  2. SIGIR
    Turbo-CF: Matrix Decomposition-Free Graph Filtering for Fast Recommendation
    Jin-Duk Park, Yong-Min Shin, and Won-Yong Shin
    In ACM SIGIR Conference on Research and Development in Information Retrieval, Apr 2024
  3. PAMI
    PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks
    Yong-Min Shin, Sun-Woo Kim, and Won-Yong Shin
    Transactions on Pattern Analysis and Machine Intelligence, Apr 2024
  4. arXiv
    KAN: Kolmogorov-Arnold Networks
    Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic, Thomas Y. Hou, and Max Tegmark
    CoRR, Apr 2024

2023

  1. LoG
    Propagate & Distill: Towards Effective Graph Learners Using Propagation-Embracing MLPs
    Yong-Min Shin, and Won-Yong Shin
    In The Second Learning on Graphs Conference, Nov 2023

2022

  1. AAAI
    Prototype-Based Explanations for Graph Neural Networks (Student Abstract) (selected for oral presentation)
    Yong-Min Shin, Sun-Woo Kim, Eun-Bi Yoon, and Won-Yong Shin
    In AAAI Conference on Artificial Intelligence, (AAAI), Feb 2022
  2. arXiv
    Time-Series Anomaly Detection with Implicit Neural Representation
    Kyeong-Joong Jeong, and Yong-Min Shin
    arXiv preprint, Feb 2022
  3. TETC
    Edgeless-GNN: Unsupervised Representation Learning for Edgeless Nodes
    Yong-Min Shin, Cong Tran, Won-Yong Shin, and Xin Cao
    IEEE Transactions on Emerging Topics in Computing, Jul 2022
  4. PLOS ONE
    Explainable gait recognition with prototyping encoder–decoder
    Jucheol Moon, Yong-Min Shin, Jin-Duk Park, Nelson Hebert Minaya, Won-Yong Shin, and Sang-Il Choi
    PLOS ONE, Mar 2022
  5. ICLR
    The Efficiency Misnomer
    Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas Beyer, and Ashish Vaswani
    In ICLR, Apr 2022

2021

  1. ICLR
    On the Bottleneck of Graph Neural Networks and its Practical Implications
    Uri Alon, and Eran Yahav
    In ICLR, May 2021

2019

  1. arXiv
    Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
    Hoang NT, and Takanori Maehara
    CoRR, May 2019
  2. ICML
    Simplifying Graph Convolutional Networks
    Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger
    In ICML, Jun 2019

2017

  1. ICLR
    Semi-Supervised Classification with Graph Convolutional Networks
    Thomas N. Kipf, and Max Welling
    In ICLR, Apr 2017
  2. NeurIPS
    Inductive Representation Learning on Large Graphs
    William L. Hamilton, Zhitao Ying, and Jure Leskovec
    In NeurIPS, Dec 2017

2016

  1. ICML
    Revisiting Semi-Supervised Learning with Graph Embeddings
    Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov
    In ICML 2016, Jun 2016
  2. NeurIPS
    Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
    Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst
    In NeurIPS, Dec 2016

2013

  1. The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains
    David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst
    IEEE Signal Process. Mag., Dec 2013

2007

  1. A tutorial on spectral clustering
    Ulrike Luxburg
    Stat. Comput., Dec 2007

2003

  1. NIPS
    Learning with Local and Global Consistency
    Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf
    In NIPS, Dec 2003